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Exercises

Chapter2

2.1. We have assumed that the economy discounts s periods ahead using the geometric (or

exponential) discount factor βs = (1+θ)−s for {s = 0, 1, 2, ...}. Suppose instead that the economy

uses the sequence of hyperbolic discount factors βs = {1, ϕβ, ϕβ2, ϕβ3, ...} where 0 < ϕ < 1.

(a) Compare the implications for discounting of using geometric and hyperbolic discount fac-

tors.

(b) For the centrally planned model

yt = ct + it

∆kt+1 = it − δkt

where yt is output, ct is consumption, it is investment, kt is the capital stock and the objective is

to maximize

Vt =
∞X
s=0

βsU(ct+s)

derive the optimal solution under hyperbolic discounting and comment on any differences with

the solution based on geometric discounting.

2.2. Assuming hyperbolic discounting, the utility function U(ct) = ln ct and the production

function yt = Akt,

(a) derive the optimal long-run solution.

(b) Analyse the short-run solution.

2.3. Consider the CES production function yt = A[αk
1− 1

γ

t + (1− α)n
1− 1

γ

t ]
1

1− 1
γ

(a) Show that the CES function becomes the Cobb-Douglas function as γ → 1.

(b) Verify that the CES function is homogeneous of degree one and hence satisfies F (kt, nt) =

Fn,tnt + Fk,tkt.
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2.4. Consider the following centrally-planned model with labor

yt = ct + it

∆kt+1 = it − δkt

yt = A[αk
1− 1

γ

t + (1− α)n
1− 1

γ

t ]
1

1− 1
γ

where the objective is to maximize

Vt =
∞X
s=0

βs[ln ct+s + ϕ ln lt+s], β =
1

1 + θ

where yt is output, ct is consumption, it is investment, kt is the capital stock, nt is employment

and lt is leisure (lt + nt = 1).

(a) Derive expressions from which the long-run solutions for consumption, labour and capital

may be obtained.

(b) What are the implied long-run real interest rate and wage rate?

(c) Comment on the implications for labor of having an elasticity of substitution between

capital and labor different from unity

(d) Obtain the long-run capital-labor ratio.

2.5. (a) Comment on the statement: "the saddlepath is a knife-edge solution; once the economy

departs from the saddlepath it is unable to return to equilibrium and will instead either explode

or collapse."

(b) Show that although the solution for the basic centrally-planned economy of Chapter 2 is a

saddlepath, it can be approximately represented by a stable autoregressive process.

2.6. In continuous time the basic centrally-planned economy problem can be written as: max-

imize
R∞
0
e−θtu(ct)dt with respect {ct, kt} subject to the budget constraint F (kt) = ct +

.

kt + δkt.

(a) Obtain the solution using the Calculus of Variations.

(b) Obtain the solution using the Maximum Principle.
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(c) Compare these solutions with the discrete-time solution of Chapter 2.

Chapter 3

3.1. Re-work the optimal growth solution in terms of the original variables, i.e. without first

taking deviations about trend growth.

(a) Derive the Euler equation

(b) Discuss the steady-state optimal growth paths for consumption, capital and output.

3.2. Consider the Solow-Swan model of growth for the constant returns to scale production

function Yt = F [eμtKt, e
νtNt] where μ and ν are the rates of capital and labor augmenting

technical progress.

(a) Show that the model has constant steady-state growth when technical progress is labor

augmenting.

(b) What is the effect of the presence of non-labor augmenting technical progress?

3.3. Consider the Solow-Swan model of growth for the production function Yt = A(eμtKt)
α(eνtNt)

β

where μ is the rate of capital augmenting technical progress and ν is the rate of labor augmenting

technical progress. Consider whether a steady-state growth solution exists under

(a) increasing returns to scale, and

(b) constant returns to scale.

(c) Hence comment on the effect of the degree of returns to scale on the rate of economic

growth, and the necessity of having either capital or labor augmenting technical progress in order

to achieve economic growth.

3.4. Consider the following two-sector endogenous growth model of the economy due to Rebelo

(1991) which has two types of capital, physical kt and human ht. Both types of capital are required
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to produce goods output yt and new human capital iht . The model is

yt = ct + ikt

∆kt+1 = ikt − δkt

∆ht+1 = iht − δht

yt = A(φkt)
α(μht)

1−α

iht = A[(1− φ)kt]
ε[(1− μ)ht]

1−ε

where ikt is investment in physical capital, φ and μ are the shares of physical and human capital

used in producing goods and α > ε. The economy maximizes Vt = Σ∞s=0β
s c

1−σ
t+s

1−σ .

(a) Assuming that each type of capital receives the same rate of return in both activities, find

the steady-state ratio of the two capital stocks

(b) Derive the optimal steady-state rate of growth.

(c) Examine the special case of ε = 0.

Chapter 4

4.1. The household budget constraint may be expressed in different ways from equation (4.2)

where the increase in assets from the start of the current to the next period equals total income

less consumption. Derive the Euler equation for consumption and compare this with the solution

based on equation (4.2) for each of the following ways of writing the budget constraint:

(a) at+1 = (1 + r)(at + xt − ct), i.e. current assets and income assets that are not consumed

are invested.

(b) ∆at + ct = xt + rat−1, where the dating convention is that at denotes the end of period

stock of assets and ct and xt are consumption and income during period t.

(c) Wt = Σ
∞
s=0

ct+s
(1+r)s = Σ

∞
s=0

xt+s
(1+r)s + (1 + r)at, where Wt is household wealth.

4.2. The representative household is assumed to choose {ct, ct+1,...} to maximise Vt =
P∞

s=0 β
sU(ct+s),

0 < β = 1
1+θ < 1 subject to the budget constraint ∆at+1+ ct = xt+ rtat where ct is consumption,
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xt is exogenous income, at is the (net) stock of financial assets at the beginning of period t and r

is the (constant ) real interest rate.

(a) Assuming that r = θ and using the approximation U 0(ct+1)
U 0(ct)

= 1 − σ∆ ln ct+1, show that

optimal consumption is constant.

(b) Does this mean that changes in income will have no effect on consumption? Explain.

4.3 (a) Derive the dynamic path of optimal household consumption when the utility func-

tion reflects exogenous habit persistence ht and the utility function is U(ct) =
(ct−ht)1−σ

1−σ . and

household budget constraint is ∆at+1 + ct = xt + rat.

(b) Hence, obtain the consumption function making the assumption that β(1 + r) = 1. Com-

ment on the case where expected future levels of habit persistence are the same as those in the

current period, i.e. ht+s = ht for s ≥ 0.

4.4. Derive the behavior of optimal household consumption when the utility function reflects

habit persistence of the following forms:

(a) U(ct) = − (ct−γct−1)
2

2 + α(ct − γct−1)

(b) U(ct) =
(ct−γct−1)1−σ

1−σ .

where the budget constraint is ∆at+1 + ct = xt + rat.

(c) Compare (b) with the case where U(ct) =
(ct−ht)1−σ

1−σ and ht is an exogenous habitual level

of consumption.

4.5. Suppose that households have savings of st at the start of the period, consume ct but

have no income. The household budget constraint is ∆st+1 = r(st− ct), 0 < r < 1 where r is the

real interest rate.

(a) If the household’s problem is to maximize discounted utility Vt = Σ
∞
s=0β

s ln ct+swhere

β = 1
1+r ,

(i) show that the solution is ct+1 = ct

(ii) What is the solution for st?
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(b) If the household’s problem is to maximize expected discounted utility Vt = EtΣ
∞
s=0β

s ln ct+s

(i) show that the solution is 1
ct
= Et[

1
ct+1

]

(ii) Using a second-order Taylor series expansion about ct show that the solution can be

written as Et[
∆ct+1
ct

] = Et[(
∆ct+1
ct

)2]

(iii) Hence, comment on the differences between the non-stochastic and the stochastic

solutions.

4.5. Suppose that households seek to maximize the inter-temporal quadratic objective function

Vt = −
1

2
Et

∞X
s=0

βs[(ct+s − γ)2 + φ(at+s+1 − at+s)
2], β =

1

1 + r

subject to the budget constraint

ct + at+1 = (1 + r)at + xt

where ct is consumption, at is the stock of assets and xt is exogenous.

(a) Comment on the objective function.

(b) Derive expressions for the optimal dynamic behaviors of consumption and the asset stock.

(c) What is the effect on consumption and assets of a permanent shock to xt of ∆x? Comment

on the implications for the specification of the utility function.

(d) What is the effect on consumption and assets of a temporary shock to xt that is unantici-

pated prior to period t?

(e) What is the effect on consumption and assets of a temporary shock to xt+1 that is antici-

pated in period t?

4.6. Households live for periods t and t+1. The discount factor for period t+1 is β = 1. They

receive exogenous income xt and xt+1, where the conditional distribution of income in period t+1

is N(xt, σ2), but they have no assets.

(a) Find the level of ct that maximises Vt = U(ct) + EtU(ct+1) if the utility function is

quadratic: U(ct) = −12c2t + αct, (α > 0).
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(b) Calculate the conditional variance of this level of ct and hence comment on what this

implies about consumption smoothing.

4.7. An alternative way of treating uncertainty is through the use of contingent states st,

which denotes the state of the economy up to and including time t, where st = (st, st−1,...) and

there are S different possible states with probabilities p(st). The aim of the household can then be

expressed as maximizing over time and over all possible states of nature the expected discounted

sum of current and future utility

Σt,sβ
tp(st)U [c(st)]

subject to the budget constraint in state st

c(st) + a(st) = [1 + r(st)]a(st−1) + x(st)

where c(st) is consumption, a(st) are assets and x(st) is exogenous income in state st. Derive the

optimal solutions for consumption and assets.

4.8. Suppose that firms face additional (quadratic) costs associated with the accumulation of

capital and labor so that firm profits are

Πt = Akαt n
1−α
t − wtnt − it −

1

2
μ(∆kt+1)

2 − 1
2
ν(∆nt+1)

2

where μ, ν > 0, the real wage wt is exogenous and∆kt+1 = it−δkt. If firms maximize the expected

present value of the firm Et[Σ
∞
s=0(1 + r)−sΠt+s],

(a) derive the demand functions for capital and labor in the long run and the short run.

(b) What would be the response of capital and labor demand to

(i) a temporary increase in the real wage in period t, and

(ii) a permanent increase in the real wage from period t?

Chapter 5
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5.1. In an economy that seeks to maximize Σ∞s=0β
s ln ct+s (β = 1

1+r ) and takes output as given

the government finances its expenditures by taxes on consumption at the rate τ t and by debt.

(a) Find the optimal solution for consumption given government expendtitures, tax rates and

government debt.

(b) Starting from a position where the budget is balanced and there is no government debt,

analyse the consequences of

(i) a temporary increase in government expenditures in period t,

(ii) a permanent increase in government expenditures from period t.

5.2. Suppose that government expenditures gt are all capital expenditures and the stock of

government capital Gt is a factor of production. If the economy is described by

yt = ct + it + gt

yt = Akαt G
1−a
t

∆kt+1 = it − δkt

∆Gt+1 = gt − δGt

and the aim is to maximize Σ∞s=0β
s ln ct+s,

(a) obtain the optimal solution.

(b) Comment on how government expenditures are being implicitly paid for in this problem.

5.3. Suppose that government finances its expenditures through lump-sum taxes Tt and debt

bt but there is a cost of collecting taxes given by

Φ(Tt) = φ1Tt +
1

2
φ2T

2
t , Φ0(Tt) ≥ 0

If the national income identity and the government budget constraint are

yt = ct + gt +Φ(Tt)

∆bt+1 + Tt = gt + rbt +Φ(Tt)
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where output yt and government expenditures gt are exogenous, and the aim is to maximize

Σ∞s=0β
sU(ct+s) for β = 1

1+r ,

(a) find the optimal solution for taxes.

(b) What is the household budget constraint?

(c) Analyse the effects on taxes, debt and consumption of

(i) a temporary increase government expenditures in period t

(ii) an increase in output.

5.4. Assuming that output growth is zero, inflation and the rate of growth of the money supply

are π, that government expenditures on goods and services plus transfers less total taxes equals z

and the real interest rate is r > 0,

(a) what is the minimum rate of inflation consistent with the sustainability of the fiscal stance

in an economy that has government debt?

(b) How do larger government expenditures affect this?

(c) What are the implications for reducing inflation?

5.5. Consider an economy without capital that has proportional taxes on consumption and

labor and is described by the following equations

yt = Anαt = ct + gt

gt + rbt = τ ctct + τwt wtnt +∆bt+1

U(ct, lt) = ln ct + γ ln lt

1 = nt + lt

(a) State the household budget constraint.

(b) If the economy seeks to maximize Σ∞s=0β
sU(ct+s, lt+s), where β = 1

1+r , derive the optimal

steady-state levels of consumption and employment for given gt, bt and tax rates.

5.6 (a) What is the Ramsey problem of optimal taxation?
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(b) For Exercise 5 find the optimal rates of consumption and labor taxes by solving the asso-

ciated Ramsey problem.

Chapter 6

6.1. (a) Consider the following two-period OLG model. People consume in both periods but

work only in period two. The inter-temporal utility of the representative individual in the first

period is

U = ln c1 + β[ln c2 + α ln(1− n2) + γ ln g2]

where c1 and c2 are consumption and k1 (which is given) and k2 are the stocks of capital in periods

one and two, n2 is work and g2 is government expenditure in period two which is funded by a

lump-sum tax in period two. Production in periods one and two are

y1 = Rk1 = c1 + k2

y2 = Rk2 + φn2 = c2 + g2

Find the optimal centrally-planned solution for c1.

(b) Find the private sector solutions for c1 and c2, taking government expenditures as given.

(c) Compare the two solutions.

6.2 Suppose that in Exercise 6.1 the government finances its expenditures with taxes both on

labor and capital in period two so that the government budget constraint is

g2 = τ2φn2 + (R−R2)k2

where R2 is the after-tax return to capital and τ2 is the rate of tax of labor in period two. Derive

the centrally-planned solutions for c1 and c2.

6.3. (a) Continuing to assume that the government budget constraint is as defined in Exercise

6.2, find the private sector solutions for c1 and c2 when government expenditures and tax rates

are pre-announced.
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(b) Why may this solution not be time consistent?

6.4 For Exercise 6.3 assume now that the government optimizes taxes in period two taking k2

as given as it was determined in period one.

(a) Derive the necessary conditions for the optimal solution.

(b) Show that the optimal labor tax when period two arrives is zero. Is it optimal to taxe

capital in period two?

6.5. Consider the following two-period OLG model in which each generation has the same

number of people, N . The young generation receives an endowment of x1 when young and

x2 = (1 + φ)x1 when old, where φ can be positive or negative. The endowments of the young

generation grow over time at the rate γ. Each unit of saving (by the young) is invested and

produces 1+μ units of output (μ > 0) when they are old. Each of the young generation maximizes

ln c1t +
1
1+r ln c2,t+1, where c1t is consumption when young and c2,t+1 is consumption when old.

(a) Derive the consumption and savings of the young generation and the consumption of the

old generation.

(b) How do changes in φ, μ, r and γ affect these solutions?

(c) If φ = μ how does this affect the solution?
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Chapter 7

7.1. An open economy has the balance of payments identity

xt −Qxmt + r∗ft = ∆ft+1

where xt is exports, xmt is imports, ft is the net holding of foreign assets, Q is the terms of trade

and r∗ is the world rate of interest. Total output yt is either consumed at home cht or is exported,

thus

yt = cht + xt.

Total domestic consumption is ct; yt and xt are exogenous.

(a) Derive the Euler equation that maximises
P∞

s=0 β
s ln ct+s with respect to {ct, ct+1,...; ft+1, ft+2,...}

where β = 1
1+θ .

(b) Explain how and why the relative magnitudes of r∗ and θ affect the steady-state solutions

of ct and ft.

(c) Explain how this solution differs from that of the corresponding closed-economy.

(d) Comment on whether there are any benefits to being an open economy in this model.

(e) Obtain the solution for the current account.

(f) What are the effects on the current account and the net asset position of a permanent

increase in xt?

7.2. Consider two countries which consume home and foreign goods cH,t and cF,t. Each period

the home country maximizes

Ut =
h
c
σ−1
σ

H,t + c
σ−1
σ

F,t

i σ
σ−1

and has an endowment of yt units of the home produced good. The foreign country is identical

and its variables are denoted with an asterisk. Every unit of a good that is transported abroad has

a real resource cost equal to τ so that, in effect, only a proportion 1− τ arrives at its destination.

PH,t is the home price of the home good and P ∗H,t is the foreign price of the home good. The
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corresponding prices of the foreign good are PF,t and P ∗F,t. All prices are measured in terms of a

common unit of world currency.

(a) If goods markets are competitive what is the relation between the four prices and how are

the terms of trade in each country related?

(b) Derive the relative demands for home and foreign goods in each country.

(c) Hence comment on the implications of the presence of transport costs.

Note: This Exercise and the next, Exercise 7.3, is based on Obstfeld and Rogoff (2000).

7.3. Suppose the model in Exercise 7.2 is modified so that there are two periods and inter-

temporal utility is

Vt = U(ct) + βU(ct+1)

where ct =
h
c
σ−1
σ

H,t + c
σ−1
σ

F,t

i σ
σ−1
. Endowments in the two periods are yt and yt+1. Foreign prices

P ∗H,t and P ∗F,t and the world interest rate are assumed given. The first and second period budget

constraints are

PH,tyt +B = PH,tcH,t + PF,tcF,t = Ptct

PH,t+1yt+1 − (1 + r∗)B = PH,t+1cH,t+1 + PF,t+1cF,t+1 = Pt+1ct+1,

where Pt is the general price level, B is borrowing from abroad in world currency units in period

t and r∗ is the foreign real interest rate. It is assumed that there is zero foreign inflation.

(a) Derive the optimal solution for the home economy, including the domestic price level Pt.

(b) What is the domestic real interest rate r? Does real interest parity exist?

(c) How is r related to τ?

7.4. Suppose the "world" is compromised of two similar countries where one is a net debtor.

Each country consumes home and foreign goods and maximizes

Vt =
∞X
s=0

βs
(cαH,t+sc

1−α
F,t+s)

1−σ

1− σ
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subject to its budget constraint. Expressed in terms of home’s prices, the home country budget

constraint is

PH,tcH,t + StPF,tcF,t +∆Bt+1 = PH,tyH,t +RtBt

where cH,t is consumption of home produced goods, cF,t is consumption of foreign produced goods,

PH,t is the price of the home country’s output which is denoted yH,t and is exogenous, PF,t is

the price of the foreign country’s output in terms of foreign prices, and Bt is the home country’s

borrowing from abroad expressed in domestic currency which is at the nominal rate of interest Rt

and St is the nominal exchange rate. Interest parity is assumed to hold.

(a) Using an asterisk to denote the foreign country equivalent variable (e.g. c∗H,t is the foreign

country’s consumption of domestic output), what are the national income and balance of payments

identities for the home country?

(b) Derive the optimal relative expenditure on home and foreign goods taking the foreign

country - its output, exports and prices - and the exchange rate as given.

(c) Derive the price level Pt for the domestic economy assuming that ct = cαH,t+sc
1−α
F,t+s.

(d) Obtain the consumption Euler equation for the home country.

(e) Hence derive the implications for the current account and the net foreign asset position.

Comment on the implications of the home country being a debtor nation.

(f) Suppose that yt < y∗t and both are constant, that there is zero inflation in each country,

Rt = R and β = 1
1+R . Show that ct < c∗t if Bt ≥ 0.

7.5. For the model described in Exercise 7.4, suppose that there is world central planner who

maximizes the sum of individual country welfares:

Wt =
∞X
s=0

βs

"
(cαH,t+sc

1−α
F,t+s)

1−σ

1− σ
+
[(c∗H,t+s)

α(c∗F,t+s)
1−α]1−σ

1− σ

#
.

(a) What are the constraints in this problem?

(b) Derive the optimal world solution subject to these constraints where outputs and the

exchange rate are exogenous.
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(c) Comment on any differences with the solutions in Exercise 7.4.
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Chapter 8

8.1. Consider an economy in which money is the only financial asset, and suppose that house-

holds hold money solely in order to smooth consumption expenditures. The nominal household

budget constraint for this economy is

Ptct +∆Mt+1 = Ptyt

where ct is consumption, yt is exogenous income, Pt is the price level and Mt is nominal money

balances.

(a) If households maximize Σ∞s=0β
sU(ct+s), derive the optimal solution for consumption.

(b) Compare this solution with the special case where β = 1 and inflation is zero.

(c) Suppose that in (b) yt is expected to remain constant except in period t + 1 when it is

expected to increase temporarily. Examine the effect on money holdings and consumption.

(d) Hence comment on the role of real balances in determining consumption in these circum-

stances.

8.2. Suppose that the nominal household budget constraint is

∆Bt+1 +∆Mt+1 + Ptct = Ptxt +RtBt

where ct is consumption, xt is exogenous income, Bt is nominal bond holding, Mt is nominal

money balances, Pt is the general price level, mt =Mt/Pt and Rt is a nominal rate of return.

(a) Derive the real budget constraint.

(b) Comment on whether or not this implies that money is super-neutral in the whole economy.

(c) If households maximize

Vt = Σ
∞
s=0β

sU(ct+s,mt+s)

where the utility function is

U(ct,mt) =

h
cαt m

1−α
t

αα(1−α)1−α
i1−σ

1− σ

16



obtain the demand for money.

8.3. Consider a cash-in-advance economy with the national income identity

yt = ct + gt

and the government budget constraint

∆Bt+1 +∆Mt+1 + PtTt = Ptgt +RtBt

where ct is consumption, yt is exogenous national income, Bt is nominal bond holding, Mt is

nominal money balances, Pt is the general price level, mt =Mt/Pt, Tt are lump-sum taxes, Rt is

a nominal rate of return and the government consumes a random real amount gt = g + et where

et is an independently and identically distributed random shock with zero mean.

(a) If households maximize Σ∞s=0β
s ln ct+s where β = 1

1+θ , derive the optimal solutions for

consumption and money holding.

(b) Comment on how a positive government expenditure shock affects consumption and money

holding.

(c) Is money super-neutral in this economy?

8.4. Suppose that some goods c1,t must be paid for only with money Mt and the rest c2,t are

bought on credit Lt using a one period loan to be repaid at the start of next period at the nominal

rate of interest R + ρ, where R is the rate of interest on bonds which are a savings vehicle. The

prices of these goods are P1t and P2t. If households maximize Σ∞s=0(1 + R)−sU(ct+s) subject to

their budget constraint, where U(ct) = ln ct, ct =
cα1,tc

1−α
2,t

αα(1−α)1−α , and income yt is exogenous,

(a) derive the expenditures on cash purchases relative to credit.

(b) Obtain the optimal long-run solutions for c1,t and c2,t when exogenous income yt is constant.

(c) Comment on the case where there is no credit premium.

8.5. Suppose that an economy can either use cash-in-advance or credit. Compare the long-run
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levels of consumption that result from these choices for the economy in Exercise 8.4 when there

is a single consumption good ct.

8.6. Consider the following demand for money function which has been used to study hyper-

inflation

mt − pt = −α(Etpt+1 − pt), α > 0

where Mt= nominal money, mt = lnMt, Pt= price level and pt = lnPt.

(a) Contrast this with a more conventional demand function for money, and comment on why

it might be a suitable formulation for studying hyper-inflation?

(b) Derive the equilibrium values of pt and the rate of inflation if the supply of money is given

by

∆mt = μ+ εt

where μ > 0 and Et[εt+1] = 0.

(c) What will be the equilibrium values of pt if

(i) the stock of money is expected to deviate temporarily in period t+1 from this money

supply rule and take the value m∗t+1,

(ii) the rate of growth of money is expected to deviate permanently from the rule and

from period t+ 1 grow at the rate υ.
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Chapter 9

9.1. Consider an economy that produces a single good in which households maximize

Vt =
∞X
s=0

βs
∙
ln ct+s − φ lnnt+s + γ ln

Mt+s

Pt+s

¸
, β =

1

1 + r

subject to the nominal budget constraint

Ptct +∆Bt+1 +∆Mt+1 = Ptdt +Wtnt +RBt.

where c consumption, n is employment, W is the nominal wage rate, d is total real firm net

revenues distributed as dividends, B is nominal bond holdings, R is the nominal interest rate, M

is nominal money balances, P is the price level and r is the real interest rate. Firms maximize

the present value of nominal net revenues

Πt =
∞X
s=0

(1 + r)−sPt+sdt+s

where dt = yt − wtnt, the real wage is wt =Wt/Pt and the production function is yt = Atn
α
t .

(a) Derive the optimal solution on the assumption that prices are perfectly flexible.

(b) Assuming that inflation is zero, suppose that, following a shock, for example, to the money

supply, firms are able to adjust their price with probability ρ, and otherwise price retains its

previous value. Discuss the consequences for the expected price level following the shock.

(c) Suppose that prices are fully flexible but the nominal wage adjusts to shocks with probability

ρ. What are the consequences for the economy?

9.2. Consider an economy where prices are determined in each period under imperfect compe-

tition in which households have the utility function

U [ct, nt(i)] = ln ct − η lnnt(i)

with i = 1, 2. Total household consumption ct is obtained from the two consumption goods ct(1)

and ct(2) through the aggregator

ct =
ct(1)

φct(2)
1−φ

φφ(1− φ)1−φ
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and nt(1) and nt(2) are the employment levels in the two firms which have production functions

yt(i) = Aitnt(i)

and profits

Πt(i) = Pt(i)yt(i)−Wt(i)nt(i)

where Pt(i) is the output price and Wt(i) is the wage rate paid by firm i. If total consumption

expenditure is

Ptct = Pt(1)ct(1) + Pt(2)ct(2)

(a) Derive the optimal solutions for the household, treating firm profits as exogenous.

(b) Show how the price level for each firm is related to the common wage Wt and comment on

your result.

9.3. Consider a model with two intermediate goods where final output is related to intermediate

inputs through

yt =
yt(1)

φyt(2)
1−φ

φφ(1− φ)1−φ

and the final output producer chooses the inputs yt (1) and yt(2) to maximize the profits of the

final producer

Πt = Ptyt − Pt(1)yt(1)− Pt(2)yt(2)

where Pt is the price of final output and Pt(i) are the prices of the intermediate inputs. Interme-

diate goods are produced with the production function

yt(i) = Aitnt(i)
α

where nt(i) is labour input and the intermediate goods firms maximize the profit function

Πt(i) = Pt(i)yt(i)−Wtnt(i)
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where Wt is the economy-wide wage rate.

(a) Derive the demand functions for the intermediate inputs.

(b) Derive their supply functions.

(c) Hence examine whether there is an efficiency loss for total output.

9.4. Consider pricing with intermediate inputs where the demand for an intermediate firm’s

output is

yt(i) =

µ
Pt(i)

Pt

¶−φ
yt

its profit is

Πt(i) = Pt(i)yt(i)− Ct(i)

and its total cost is

Ct(i) =
φ

1− φ
ln[Pt(i)yt(i)].

(a) Find the optimal price Pt(i)∗ if the firm maximizes profits period by period while taking

yt and Pt as given.

(b) If instead the firm chooses a price which it plans to keep constant for all future periods

and hence maximizes Σ∞s=0(1 + r)−sΠt+s(i), derive the resulting optimal price Pt(i)#.

(c) What is this price if expressed in terms of Pt(i)∗?

(d) Hence comment on the effect on today’s price of anticipated future shocks to demand and

costs.

9.5. Consider an economy with two sectors i = 1, 2. Each sector sets its price for two periods

but does so in alternate periods. The general price level in the economy is the average of sector

prices: pt =
1
2(p1t + p2t), hence pt =

1
2(p

#
it + p#i+1,t−1). In the period the price is reset it is

determined by the average of the current and the expected future optimal price: p#it =
1
2(p
∗
it +

Etp
∗
i,t+1), i = 1, 2. The optimal price is assumed to be determined by p

∗
it− pt = φ(wt− pt), where

wt is the wage rate.
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(a) Derive the general price level if wages are generated by ∆wt = et, where et is a zero mean

i.i.d. process. Show that pt can be given a forward-looking, a backward-looking and a univariate

representation.

(b) If the price level in steady state is p, how does the price level in period t respond to an

unanticipated shock in wages in period t?

(c) How does the price level deviate from p in period t in response to an anticipated wage

shock in period t+ 1?
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Chapter 10

10.1. (a) Suppose that a consumer’s initial wealth is given by W0, and the consumer has the

option of investing in a risky asset which has a rate of return r or a risk-free asset which has a sure

rate of return f . If the consumer maximizes the expected value of a strictly increasing, concave

utility function U(W ) by choosing to hold the risky versus the risk-free asset, and if the variance

of the return on the risky asset is V (r), find an expression for the risk premium ρ that makes the

consumer indifferent between holding the risky and the risk-free asset.

(b) Explain how absolute risk aversion differs from relative risk aversion.

(c) Suppose that the consumer’s utility function is the hyperbolic absolute risk aversion

(HARA) function

U(W ) =
1− σ

σ

∙
αW

1− σ
+ β

¸σ
, α > 0, β > 0, ; 0 < σ < 1.

Discuss how the magnitude of the risk premium varies as a function of wealth and the para-

meters α, β, and σ.

10.2. Consider there exists a representative risk-averse investor who derives utility from current

and future consumption according to

U = Σθs=0βsEtU(ct+s),

where 0 < β < 1 is the consumer’s subjective discount factor, and the single-period utility function

has the form

U(ct) =
c1−σt − 1
1− σ

, σ ≥ 0.

The investor receives a random exogenous income of yt and can save by purchasing shares in a

stock or by holding a risk-free one-period bond with a face-value of unity. The ex-dividend price

of the stock is given by PS
t in period t. The stock pays a random stream of dividends Dt+s per

share held at the end of the previous period. The bond sells for PB
t in period t.

(a) Find an expression for the bond price that must hold at the investor’s optimum.
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(b) Find an expression for the stock price that must hold at the investor’s optimum. Interpret

this expression.

(c) Derive an expression for the risk premium on the stock that must hold at the investor’s

optimum. Interpret this expression.

10.3. If the pricing kernel isMt+1, the return on a risky asset is rt and that on a risk-free asset

is ft,

(a) state the asset-pricing equation for the risky asset and the associated risk premium.

(b) Express the risk premium as a function of the conditional variance of the risky asset and

give a regression interpretation of your result.

10.4. (a) What is the significance of an asset having the same pay-off in all states of the world?

(b) Consider a situation involving three assets and two states. Suppose that one asset is a

risk-free bond with a return of 20%, a second asset has a price of 100 and pay-offs of 60 and 200

in the two states, and a third asset has pay-offs of 100 and 0 in the two states. If the probability

of the first state occurring is 0.4.

(i) What types of assets might this description fit?

(ii) Find the prices of the implied contingent claims in the two states.

(iii) Find the price of the third asset.

(iv) What is the risk premium associated with the second asset?

10.5. Consider the following two-period problem for a household in which there is one state of

the world in the first period and two states in the second period. Income in the first period is 6;

in the second period it is 5 in state one which occurs with probability 0.2, and is 10 in state two.

There is a risk-free bond with a rate of return equal to 0.2. If instantaneous utility is ln ct and

the rate of time discount is 0.2 find

(a) the levels of consumption in each state,

(b) the state prices,
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(c) the stochastic discount factors,

(d) the risk-free "rate of return" (i.e. rate of change) to income in period two,

(e) the "risk premium" for income in period two.
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Chapter 11

11.1. An investor with the utility function U(ct) =
c‘−σt

1−σ who maximizes EtΣ
∞
s=0β

sU(ct+s) can

either invest in equity with a price of PS
t and a dividend of Dt or a risk-free one-period bond with

nominal return ft. Derive

(a) the optimal consumption plan, and

(b) the equity premium.

(c) Discuss the effect on the price of equity in period t of a loosening of monetary policy as

implemented by an increase in the nominal risk-free rate ft.

11.2. (a) A household with the utility function U(ct) = ln ct, which maximizesEtΣ
∞
s=0β

sU(ct+s),

can either invest in a one-period domestic risk-free bond with nominal return Rt, or a one-period

foreign currency bond with nominal return (in foreign currency) of R∗t . If the nominal exchange

rate (the domestic price of foreign exchange) is St derive

(i) the optimal consumption plan, and

(ii) the foreign exchange risk premium.

(b) Suppose that foreign households have an identical utility function but a different discount

factor β∗, what is their consumption plan and their risk premium?

(c) Is the market complete? If not,

(i) what would make it complete?

(ii) How would this affect the two risk premia?

11.3. Let St denote the current price in dollars of one unit of foreign currency; Ft,T is the

delivery price agreed to in a forward contract; r is the domestic interest rate with continuous

compounding; r∗ is the foreign interest rate with continuous compounding.

(a) Consider the following pay-offs:

(i) investing in a domestic bond
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(ii) investing a unit of domestic currency in a foreign bond and buying a forward contract

to convert the proceeds.

Find the value of the forward exchange rate Ft,T .

(b) Suppose that the foreign interest rate exceeds the domestic interest rate at date t so that

r∗ > r. What is the relation between the forward and spot exchange rates?

11.4. (a) What is the price of a forward contract on a dividend-paying stock with stock price

St?

(b) A one-year long forward contract on a non-dividend-paying stock is entered into when the

stock price is $40 and the risk-free interest rate is 10% per annum with continuous compounding.

What is the forward price?

(c) Six months later, the price of the stock is $45 and the risk-free interest rate is still 10%.

What is the forward price?

11.5. Suppose that in an economy with one and two zero-coupon period bonds investors

maximize EtΣ
∞
s=0β

s ln ct+s. What is

(a) the risk premium in period t for the two-period bond, and

(b) its price in period t?

(c) What is the forward rate for the two-period bond?

(d) Hence, express the risk premium in terms of this forward rate.

11.6. Consider a Vasicek model with two independent latent factors z1t and z2t. The price of

an n-period bond and the log discount factor may be written as

pn,t = −[An +B1nz1t +B2nz2t]

mt+1 = −[z1t + z2t + λ1e1,t+1 + λ2e2,t+1]

where the factors are generated by

zi,t+1 − μi = φi(zit − μi) + ei,t+1, i = 1, 2.
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(a) Derive the no-arbitrage condition for an n-period bond and its risk premium. State any

additional assumptions made.

(b) Explain how the yield on an n-period bond and its risk premium can be expressed in terms

of the yields on one and two period bonds.

(c) Derive an expression for the n-period ahead forward rate.

(d) Comment on the implications of these results for the shape and behavior over time of the

yield curve.

11.7 In their affine model of the term structure Ang and Piazzesi (2003) specify the pricing

kernel Mt directly as follows:

Mt+1 = exp(−st)
ξt+1
ξt

st = δ0 + δ01zt

zt = μ+ φ0zt−1 +Σet+1

ξt+1
ξt

= exp(−1
2
λ0tλt − λ0tet+1)

λt = λ0 + λ1zt

pn,t = An +B0
nzt

(a) Derive the yield curve, and

(b) and the risk premium on a n-period yield.
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Chapter 12

12.1. According to rational expectations models of the nominal exchange rate, such as the

Monetary Model, an increase in the domestic money supply is expected to cause an appreciation

in the exchange rate, but the exchange rate depreciates. Explain why the Monetary Model is

nonetheless correct.

12.2 The Buiter-Miller (1981) model of the exchange rate - not formally a DGE model but,

apart from the backward-looking pricing equation, broadly consistent with such an interpretation

- may be represented as follows:

yt = α(st + p∗t − pt)− β(Rt −∆pt+1 − rt) + gt + γy∗t

mt − pt = yt − λRt

∆pt+1 = θ(yt − ynt ) + π#t

∆st+1 = Rt −R∗t

where y is output, yn is full employment output, g is government expenditure, s is the log exchange

rate, R is the nominal interest rate, r is the real interest rate, m is log nominal money, p is the

log price level, π# is target inflation and an asterisk denotes the foreign equivalent.

(a) Derive the long-run and short-run solutions for output, the price level and the exchange

rate.

(b) Hence comment on the effects of monetary and fiscal policy.

(c) Suppose that the foreign country is identical and the two countries comprise the "world"

economy. Denoting the corresponding world variable as xt = xt + x∗t and the country differential

by ext = xt − x∗t ,

(i) derive the solutions for the world economy and for the differences between the economies.

(ii) Analyse the effects of monetary and fiscal policy on the world economy.

12.3 Consider a small cash-in-advance open economy with a flexible exchange rate in which
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output is exogenous, there is Calvo pricing, PPP holds in the long run, UIP holds and households

maximize Σ∞j=0β
j ln ct+j subject to their budget constraint

St∆Ft+1 +∆Mt+1 + Ptct = Ptxt +R∗tStFt

where Pt is the general price level, ct is consumption, xt is output, Ft is the net foreign asset

position, Mt is the nominal money stock, St is the nominal exchange rate and R∗t is the foreign

nominal interest rate.

(a) Derive the steady-state solution of the model when output is fixed.

(b) Obtain a log-linear approximation to the model suitable for analysing its short-run behavior

(c) Comment on its dynamic properties.

12.4. Suppose the global economy consists of two identical countries who take output as given,

have cash-in-advance demands for money based on the consumption of domestic and foreign goods

and services, and who may borrow or save either through domestic or foreign bonds. Purchasing

power parity holds and the domestic and foreign money supplies are exogenous. Global nominal

bond holding satisfies Bt + StB
∗
t = 0 where St is the domestic price of nominal exchange and

Bt is the nominal supply of domestic bonds. The two countries maximize Σ∞j=0β
j ln ct+j and

Σ∞j=0β
j ln c∗t+j , respectively, where ct is real consumption. Foreign equivalents are denoted with

an asterisk.

(a) Derive the solutions for consumption and the nominal exchange rate.

(b) What are the effects of increases in

(i) the domestic money supply and

(ii) domestic output?

12.5 Consider a world consisting of two economies A and B. Each produces a single tradeable

good and issues a risky one-period bond with real rate of returns rAt and rBt , respectively. Noting

that the real exchange rate et between these countries is the ratio of their marginal utilities,
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(a) derive the real interest parity condition.

(b) How is this affected in the following cases:

(i) both countries are risk neutral,

(ii) markets are complete?
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Chapter 13

13.1. Consider the following characterizations of the IS-LM and DGE models:

IS-LM

y = c(y, r) + i(y, r) + g

m− p = L(y, r)

DGE

∆c = − 1
σ
(r − θ) = 0

y = c+ i+ g

y = f(k)

∆k = i

fk = r

where y is output, c is consumption, i is investment, k is the capital stock, g is government

expenditure, r is the real interest rate, m is log nominal money and p is the log price level.

(a) Comment on the main differences in the two models and on the underlying approaches to

macroeconomics.

(b) Comment on the implications of the two models for the effectiveness of monetary and fiscal

policy.

13.2. (a) How might a country’s international monetary arrangements affect its conduct of

monetary policy?

(b) What other factors might influence the way it carries out its monetary policy?

13.3. The Lucas-Sargent proposition is that systematic monetary policy is ineffective. Examine
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this hypothesis using the following model of the economy due to Bull and Frydman (1983):

yt = α1 + α2(pt −Et−1pt) + ut

dt = β(mt − pt) + vt

∆pt = θ(p∗t − pt−1),

where y is output, d is aggregate demand, p is the log price level, p∗ is the market clearing price,

m is log nominal money and u and v are mean zero, mutually and serially independent shocks.

(a) Derive the solutions for output and prices.

(b) If mt = μ+ εt where εt is a mean zero serially independent shock, comment on the effect

on prices of

(i) an unanticipated shock to money in period t,

(ii) a temporary anticipated shock to money in period t,

(iii) a permanent anticipated shock to money in period t.

(c) Hence comment on the Lucas-Sargent proposition.

13.4. Consider the following model of the economy:

xt = −β(Rt −Etπt+1 − r)

πt = Etπt+1 + αxt + et

Rt = γ(Etπt+1 − π∗),

where πt is inflation, π∗ is target inflation, xt is the output gap, Rt is the nominal interest rate

and et is a mean zero serially independent shock.

(a) Why is the interest rate equation misspecified?

(b) Correct the specification and state the long-run solution.

(c) What are the short-run solutions for πt, xt and Rt?

(d) In the correctly specified model how would the behavior of inflation, output and monetary

policy be affected by
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(i) a temporary shock et

(ii) an expected shock et+1?

(e) Suppose that the output equation is modified to

xt = −β(Rt −Etπt+1 − r)− θet,

where et can be interpreted as a supply shock. How would the behavior of inflation, output and

monetary policy be affected by a supply shock?

13.5 Consider the following New Keynesian model:

πt = φ+ βEtπt+1 + γxt + eπt

xt = Etxt+1 − α(Rt −Etπt+1 − θ) + ext

Rt = θ + π∗ + μ(πt − π∗) + υxt + eRt,

where πt is inflation, π∗ is target inflation, xt is the output gap, Rt is the nominal interest rate,

eπt and eπt are independent, zero-mean iid processes and φ = (1− β)π∗.

(a) What is the long-run solution?

(b) Write the model in matrix form and obtain the short-run solutions for inflation and the

output gap when μ̇ > 1 and μ < 1.

(c) Assuming the shocks are uncorrelated, derive the variance of inflation in each case and

comment on how the choice of μ and ν affects the variance of inflation

(d) Hence comment on how to tell whether the "great moderation" of inflation in the early

2000’s was due to good policy or to good fortune.
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13.6. Consider the following model of Broadbent and Barro (1997):

yt = α(pt −Et−1pt) + et

dt = −βrt + εt

mt = yt + pt − λRt

rt = Rt −Et∆pt+1

yt = dt,

where et and εt are zero-mean mutually and serially correlated shocks.

(a) Derive the solution to the model

(i) under money supply targeting,

(ii) inflation targeting,

(b) Derive the optimal money supply rule if monetary policy minimizes Et(pt+1 − Etpt+1)
2

subject to the model of the economy.

(c) What does this policy imply for inflation and the nominal interest rate?

(d) Derive the optimal interest rate rule.

(e) How would these optimal policies differ if monetary policy was based on targeting inflation

instead of the price level?

13.7. Suppose that a monetary authority is a strict inflation targeter attempting to minimize

E(πt − π∗)2 subject to the following model of the economy

πt = αtRt + zt + et,

where αt = α + εt, E(zt) = z + εzt and εαt and εzt are random measurement errors of α and z,

respectively; εαt, εzt and et are mutually and independently distributed random variables with

zero means and variances σ2z, σ
2
α and σ2e.

(a) What is the optimal monetary policy

(i) in the absence of measurement errors,
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(ii) in the presence of measurement errors?

(b) What are broader implications of these results for monetary policy?

13.8. A highly stylized model of an open economy is

pt = αpt−1 + θ(st − pt)

st = Rt +Rt+1,

where pt is the price level, st is the exchange rate and Rt is the nominal interest rate. Suppose

that monetary policy aims to choose Rt and Rt+1 to minimize

L = (pt − p∗)2 + β(pt+1 − p∗)2 + γ(Rt −R∗)2,

where pt−1 = Rt+2 = 0.

(a) Find the time consistent solutions for Rt and Rt+1. (Hint: first find Rt+1 taking Rt as

given.)

(b) Find the optimal solution by optimizing simultaneously with respect to Rt and Rt+1.

(c) Compare the two solutions and the significance of γ.

13.9. Consider the following model of an open economy:

πt = μ+ βEtπt+1 + γxt + eπt

xt = −α(Rt −Etπt+1 − θ) + φ(st + p∗t − pt) + ext

∆st+1 = Rt −R∗t + est,

where eπt, ext and est are mean zero, mutually and serially independent shocks to inflation, output

and the exchange rate.

(a) Derive the long-run solution making any additional assumptions thought necessary.

(b) Derive the short-run solution for inflation.
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(c) Each period monetary policy is set to minimize Et(πt+1 − π∗)2, where π∗ is the long-run

solution for π, on the assumption that the interest rate chosen will remain unaltered indefinitely

and foreign interest rate and price level will remain unchanged. Find the optimal value of Rt.
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Chapter 14

14.1. Consider a variant on the basic real business cycle model. The economy is assumed to

maximize Et

∞P
s=0

βs ct+s
1−σ

1−σ subject to

yt = ct + it

yt = Atk
α
t

∆kt+1 = it − δkt

lnAt = ρ lnAt−1 + et,

where yt is output, ct is consumption, it is investment, kt is the capital stock, At is technical

progress and et ∼ i.i.d(0, ω2).

(a) Derive

(i) the optimal short-run solution,

(ii) the steady-state solution,

(ii) a log-linearization to the short-run solution about its steady state in ln ct − ln c and

ln kt − ln k, where ln c and ln k are the steady-state values of ln ct and ln kt.

(b) If, in practice, output, consumption and capital are non-stationary I(1) variables,

(i) comment on why this model is not a useful specification.

(ii) Suggest a simple re-specification of the model that would improve its usefulness.

(c) In practice, output, consumption and capital also have independent sources of random

variation.

(i) Why is this not compatible with this model?

(ii) Suggest possible ways in which the model might be re-specified to achieve this.

14.2 After (log-) linearization all DSGE models can be written in the form

B0xt = B1Etxt+1 +B2zt.
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If there are lags in the model, then the equation will be in companion form and xt and zt will be

long (state) vectors. And if B0 is invertible then the DSGE model can also be written as

xt = A1Etxt+1 +A2zt,

where A1 = B−10 B1 and A2 = B−10 B2.

(a) Show that the model in Exercise 14.1 can be written in this way.

(b) Hence show that the solution can be written as a vector autoregressive-moving average

(VARMA) model.

(c) Hence comment on the effect of a technology shock.

14.3. Consider the real business cycle model defined in terms of the same variables as in

Exercise 14.1 with the addition of employment, nt:

Ut = Et

∞X
s=0

βs[
ct+s

1−σ

1− σ
− γ

nt+s
1−φ

1− φ
]

yt = ct + it

yt = Atk
α
t n

1−α
t

∆kt+1 = it − δkt

lnAt = ρ lnAt−1 + et,

where et ∼ i.i.d(0, ω2).

(a) Derive the optimal solution

(b) Hence find the steady-state solution.

(c) Log-linearize the solution about its steady state to obtain the short-run solution.

(d) What is the implied dynamic behavior of the real wage and the real interest rate?

14.4 For a log-linearized version of the model of Exercise 14.1 write a Dynare program to

compute the effect of an unanticipated temporary technology shock on the logarithms of output,

consumption and capital and the implied real interest rate assuming that α = 0.33, δ = 0.1, σ = 4,

θ = 0.05, ρ = 0.5 and the variance of the technology shock et is zero.

39



Notes:

(i) Dynare runs in both Matlab and Gauss and is freely downloadable from http://www.dynare.org

(ii) Dynare uses a different dating convention. It dates non-jump variables like the capital

stock at the end and not the start of the period, i.e. as t− 1 and not t.

14.5 For the model of Exercise 14.1 write a Dynare program to compute the effect of a tempo-

rary technology shock assuming that α = 0.33, δ = 0.1, σ = 4, θ = 0.05, ρ = 0.5 and the variance

of the technology shock et is unity. Plot the impulse response functions for output, consumption,

capital and the real interest rate.

14.6. For the model of Exercise 14.5 write a Dynare program for a stochastic simulation which

calculates the means, variances, cross correlations and autocorrelations.

14.7 (a) Consider the New Keynesian model

πt = π∗ + α(Etπt+1 − π∗) + β(πt−1 − π∗) + δxt + eπt

xt = Etxt+1 − γ(Rt −Etπt+1 − θ) + ext

Rt = θ + π∗ + μ(πt − π∗) + υxt,

where πt is inflation, π∗ is target inflation, xt is the output gap, Rt is the nominal interest rate,

eπt and ext are independent, shocks.ean iid processes and φ = (1−β)π∗. Write a Dynare program

to compute the effect of a supply shock in period t such that eπt = −ext = 5. Assume that π∗ = 2,

α = 0.6, α+ β = 1, δ = 1, γ = 5, θ = 3, μ = 1.5 and ν = 1.

(b) Compare the monetary policy response to the increase in inflation compared with that of

a strict inflation targeter when ν = 0.
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Solutions

Chapter2

2.1. We have assumed that the economy discounts s periods ahead using the geometric (or

exponential) discount factor βs = (1+θ)−s for {s = 0, 1, 2, ...}. Suppose instead that the economy

uses the sequence of hyperbolic discount factors βs = {1, ϕβ, ϕβ2, ϕβ3, ...} where 0 < ϕ < 1.

(a) Compare the implications for discounting of using geometric and hyperbolic discount fac-

tors.

(b) For the centrally planned model

yt = ct + it

∆kt+1 = it − δkt

where yt is output, ct is consumption, it is investment, kt is the capital stock and the objective is

to maximize

Vt =
∞X
s=0

βsU(ct+s)

derive the optimal solution under hyperbolic discounting and comment on any differences with

the solution based on geometric discounting.

Solution

(a) As 0 < ϕ < 1 the hyperbolic discount factor is smaller than the corresponding geometric

discounting for a given value of β and s > 0. This implies that the future is discounted more and

hence becomes less ‘important’ than before. Figure 2.1 illustrates the effect of different values of

ϕ for a given value of β = 0.9.

(b) The Lagrangian with hyperbolic discounting is

Lt = U(ct)+λt[F (kt)−ct−kt+1+(1−δ)kt]+
∞X
s=1

{ϕβsU(ct+s)+λt+s[F (kt+s)−ct+s−kt+s+1+(1−δ)kt+s]}
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The first-order are conditions are

∂Lt
∂ct+s

= {
U 0(ct)− λt = 0, s = 0

ϕβsU 0(ct+s)− λt+s = 0, s > 0

∂Lt
∂kt+s

= λt+s[F
0(kt+s) + 1− δ]− λt+s−1 = 0, s > 0

plus the resource constraints and the transversality condition lims→∞ ϕβsU 0(ct+s)kt+s = 0. The

Euler equations for s ≥ 0 can be written as

ϕβ
U 0(ct+1)

U 0(ct)
[F 0(kt+1) + 1− δ] = 1 (1)

β
U 0(ct+s+1)

U 0(ct+s)
[F 0(kt+s+1) + 1− δ] = 1, s > 0 (2)

These differ for the first period. Hence hyperbolic only differs from geometric discounting in the

initial period. The long-run optimal levels of the capital stock and consumption will be the same

as for geometric discounting. After period t+1 the short-run responses of consumption and capital

to a shock will also be the same as for geometric discounting, but between periods t and t+1 the

response of consumption along the optimal path differs.

2.2. Assuming hyperbolic discounting, the utility function U(ct) = ln ct and the production

function yt = Akt,

(a) derive the optimal long-run solution.

(b) Analyse the short-run solution.

Solution

(a) From the solution of exercise 1, equations (1) and (2) the optimal long run solution for

capital is obtained from its net marginal product

F 0k − δ = αAkα−1 = θ
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giving

k =

µ
θ + δ

αA

¶− 1
1−α

c = Akα − δk

(b) The Euler equation implies that the optimal rate of growth in consumption from periods

t to t+ 1 is

ct+1
ct

= ϕβ[F 0(kt+1) + 1− δ]

= ϕβ(αAk
−(1−α)
t+1 + 1− δ)

< β(αAk
−(1−α)
t+1 + 1− δ)

the corresponding solution under geometric discounting.

To illustrate the different dynamic behavior of the economy consider a permanent productivity

increase in period t. We have shown that the economy moves towards the same long-run solution

as for geometric discounting. Moreover, from t + 1, it approaches long-run equilibrium at the

same speed. Although yt is given in period t because kt cannot be changed, ct and it - and hence

kt+1 - will be different from geometric discounting. As future consumption is less important, ct

will be higher, it and hence kt+1 must be lower. In other words, there is a bigger initial impact

on consumption and thereafter consumption and the capital stock are smaller than for geometric

discounting and it takes longer to reach the same long-run equilibrium.

2.3. Consider the CES production function yt = A[αk
1− 1

γ

t + (1− α)n
1− 1

γ

t ]
1

1− 1
γ

(a) Show that the CES function becomes the Cobb-Douglas function as γ → 1.

(b) Verify that the CES function is homogeneous of degree one and hence satisfies F (kt, nt) =

Fn,tnt + Fk,tkt.

Solution
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(a) We use L’Hospital’s rule to obtain the solution. Consider re-writing the production function

as

1 =
y
1− 1

γ

t

A[αk
1− 1

γ

t + (1− α)n
1− 1

γ

t ]
=

f(γ)

g(γ)
= h(γ)

As γ → 1, 1 − 1
γ → 0 and x

1− 1
γ

t → 1. Hence f(γ) → 1, g(γ) → A and h(γ) → 1
A 6= 1. Therefore

the equation is violated as γ → 1. L’Hospital’s rule says that in a such a case we may obtain the

limit as γ → 1 using

1 =
limγ→1 f

0(γ)

limγ→1 g0(γ)
=

ln yt
A[α ln kt + (1− α) lnnt]

where we have used x
1− 1

γ

t = e(1−
1
γ ) lnxt and

de(1−
1
γ ) lnxt

dγ
= − 1

γ2
x
1− 1

γ

t lnxt → − lnxt as γ → 1

Taking exponentials gives the Cobb-Douglas production function

yt = eAkαt n
1−α
t .

(b) First consider the marginal product of capital. The CES production function can be

rewritten as

y
1− 1

γ

t = A1−
1
γ [αk

1− 1
γ

t + (1− α)n
1− 1

γ

t ]

Hence, partially differentiating with respect to kt, gives

(1− 1
γ
)y
− 1
γ

t

∂yt
∂kt

= A1−
1
γ α(1− 1

γ
)k
− 1
γ

t

It follows that

∂yt
∂kt

= αA1−
1
γ

µ
yt
kt

¶ 1
γ

and

∂yt
∂nt

= (1− α)A1−
1
γ

µ
yt
nt

¶ 1
γ
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If F (kt, nt) = Fn,tnt + Fk,tkt holds then

F (kt, nt) = Fn,tnt + Fk,tkt

= αA1−
1
γ

µ
yt
kt

¶ 1
γ

kt + (1− α)A1−
1
γ

µ
yt
nt

¶ 1
γ

nt

= A1−
1
γ y

1
γ

t [αk
1− 1

γ

t + (1− α)n
1− 1

γ

t ]

= yt.

Hence

yt = A[αk
1− 1

γ

t + (1− α)n
1− 1

γ

t ]
1

1− 1
γ

2.4. Consider the following centrally-planned model with labor

yt = ct + it

∆kt+1 = it − δkt

yt = A[αk
1− 1

γ

t + (1− α)n
1− 1

γ

t ]
1

1− 1
γ

where the objective is to maximize

Vt =
∞X
s=0

βs[ln ct+s + ϕ ln lt+s], β =
1

1 + θ

where yt is output, ct is consumption, it is investment, kt is the capital stock, nt is employment

and lt is leisure (lt + nt = 1).

(a) Derive expressions from which the long-run solutions for consumption, labour and capital

may be obtained.

(b) What are the implied long-run real interest rate and wage rate?

(c) Comment on the implications for labor of having an elasticity of substitution between

capital and labor different from unity

(d) Obtain the long-run capital-labor ratio.

Solution

46



(a) This problem is special case of the analysis in Chapter 2 for particular specifications of the

utility and production functions. The Lagrangian is

Lt =
∞X
s=0

{βsU(ct+s, lt+s) + λt+s[F (kt+s, nt+s)− ct+s − kt+s+1 + (1− δ)kt+s]

+μt+s[1− nt+s − lt+s]}

which is maximized with respect to {ct+s, lt+s, nt+s, kt+s+1, λt+s, μt+s; s ≥ 0}. The first-order

conditions are

∂Lt
∂ct+s

= βsUc,t+s − λt+s = 0, s ≥ 0

∂Lt
∂lt+s

= βsUl,t+s − μt+s = 0, s ≥ 0

∂Lt
∂nt+s

= λt+sFn,t+s − μt+s = 0, s ≥ 0

∂Lt
∂kt+s

= λt+s[Fk,t+s + 1− δ]− λt+s−1 = 0, s > 0

The consumption Euler equation for s = 1 is

β
Uc,t+1
Uc,t

[Fk,t+1 + 1− δ] = 1

or, in this case,

β
ct
ct+1

[αA1−
1
γ

µ
yt+1
kt+1

¶ 1
γ

+ 1− δ] = 1

The long-run static equilibrium solution is therefore

y

k
= A1−γ

µ
θ + δ

α

¶γ
Eliminating λt+s and μt+s from the first-order conditions for consumption, leisure and employment

gives for s = 0

ϕ

lt
=
(1− α)A1−

1
γ

³
yt
nt

´ 1
γ

ct
(3)

Consequently, the long-run solution satisfies

c

1− n
=
1− α

ϕ
A1−

1
γ

³ y
n

´ 1
γ

(4)
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The solutions for the long-run values c, k, l, n, and y are obtained by solving equations (3) and (4)

simultaneously with

y = A[αk1−
1
γ + (1− α)n1−

1
γ ]

1

1− 1
γ

y = c+ δk

l + n = 1

These equations form a non-linear system and do not have a closed-form solution.

(b) The implied long-run real wage is

wt = Fn,t

= (1− α)A1−
1
γ

µ
yt
nt

¶ 1
γ

and the long-run real interest rate is r = θ.

(c) The long-run demand for labor is

n = (1− α)γA−(1−γ)yw−γ

Hence the greater the degree of substitutability between capital and labor γ, the more sensitive

is the demand for labor to changes in the real wage. The labor share is

wn

y
= (1− α)γ

³w
A

´1−γ
Consequently, the smaller is the elasticity of substitution, the greater is the share of labor. If

γ = 1 then the share of labor is constant. Note also that an increase in productivity A increases

the share of labor if γ > 1.

(d) From the marginal products for capital and labor the long-run capital-labor ratio can be

shown to be

k

n
=

∙
αw

(1− α)(θ + δ)

¸γ
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Thus, the higher the degree of substitutability γ, the greater is the response of the capital-labor

ratio to changes in the rates of return on capital and labor.

2.5. (a) Comment on the statement: "the saddlepath is a knife-edge solution; once the economy

departs from the saddlepath it is unable to return to equilibrium and will instead either explode

or collapse."

(b) Show that although the solution for the basic centrally-planned economy of Chapter 2 is a

saddlepath, it can be approximately represented by a stable autoregressive process.

Solution

(a) This statement reflects a misunderstanding of the nature of the dynamic solution to the

DSGE model that often arises when a phase-diagram rather than an algebraic derivation of the

solution is used. In fact, the economy cannot explode given the usual assumptions of the DSGE

model such as the basic centrally-planned model of Chapter 2. The potential advantage of using

a phase diagram is that it may be better able to represent non-linear dynamics than an algebraic

solution which, due to its mathematical intractability, is commonly simplified by being formulated

in terms of local deviations from long-run equilibrium.

The phase diagram depicting the dynamic behavior of the optimal solution for the basic

centrally-planned economy in Chapter 2, Figure 10, is
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Figure 10

The arrows depict the dynamic behavior of consumption and capital for each point in space

(for the positive orthant) and the saddlepath SS shows the saddlepath back to equilibrium at point

B (i.e. the stable manifold). The functional form of the saddlepath is in general non-linear. It can

also be approximated in the neighborhood of equilibrium (i.e. locally) by a partial adjustment

mechanism with a forward-looking long-run solution based on current and expected future values

of the exogenous variables. The dynamics of the adjustment to equilibrium following a shock are

a first-order autoregressive process. Some examples are given in the Appendix, section 15.8.4.

The functional form for the saddlepath and all its parameters are derived from the specification

of the model’s parameters. Change the model parameters and the saddlepath changes, but not

its functional form. In contrast, the points in the phase diagram not on the saddlepath are not

determined in terms of the model parameters. This is because, given the model, these points

are unattainable. Only the points on the saddlepath are attainable. For this reason the arrows

usually found in a phase may be misleading. They suggest that if the economy enters the wrong

region it could explode or collapse. But, given the model, the economy can’t enter such a region,
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and so cannot explode or collapse. Perhaps, therefore, there is less danger of misinterpreting the

dynamic behavior of the economy if it is solving algebraically rather than being described using a

phase diagram.

(b) For the basic centrally-planned economy of Chapter 2 we obtained the local approximation

to the dynamic structure of the model as⎡⎢⎢⎣ ct+1 − c∗

kt+1 − k∗

⎤⎥⎥⎦ =
⎡⎢⎢⎣ 1 + U 0F 00

U 00 −(1 + θ)U
0F 00

U 00

−1 1 + θ

⎤⎥⎥⎦
⎡⎢⎢⎣ ct − c∗

kt − k∗

⎤⎥⎥⎦
This can be rewritten as

zt+1 = Azt + (I −A)z∗

where zt = (ct, kt)
0 and z∗ = (c∗, k∗)0. The matrix A is a function of the parameters of the

model, in particular, of the utility and production functions and of c∗and k∗. All of these are

given. The two eigenvalues of A satisfy the saddlepath property that one is stable and the other

is unstable. The eigenvalues were shown to be

{λ1, λ2} ' {
1 + θ

2 + θ + U 0F 00

U 00
, 2 + θ +

U 0F 00

U 00
− 1 + θ

2 + θ + U 0F 00

U 00
}

with 0 < λ1 < 1 and λ2 > 1.

A canonical factorization of A gives A = Q−1ΛQ where Q is a matrix of eigenvectors and Λ is

a diagonal matrix of eigenvalues. Hence,

Qzt+1 = QAQ−1Qzt +Q(I −A)Q−1Qz∗

or

wt+1 = Λwt + (I − Λ)w∗

where wt = (w1t, w2t)
0 = Qzt and w∗ = Qz∗. Hence, we have two equations determining two

variables:

w1,t+1 = λ1w1t + (1− λ1)w
∗
1

w2,t+1 = λ2w2t + (1− λ2)w
∗
2
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As 0 < λ1 < 1, the first equation shows that w1t follows a stable autoregressive process. As

λ2 > 1, we rewrite the second equation as

w2t = λ−12 w2,t+1 + (1− λ−12 )w
∗
2

and solve it forwards to give

w2t = (1− λ−12 )Σ
∞
s=0λ

−s
2 w∗2

= w∗2

It follows that

wt+1 =

⎡⎢⎢⎣ λ1 0

0 0

⎤⎥⎥⎦wt +

⎡⎢⎢⎣ 1− λ1 0

0 1

⎤⎥⎥⎦w∗
and so the solutions for consumption and capital are obtained from zt = Q−1wt or

zt+1 = Q−1

⎡⎢⎢⎣ λ1 0

0 0

⎤⎥⎥⎦Qzt +Q−1

⎡⎢⎢⎣ 1− λ1 0

0 1

⎤⎥⎥⎦Qz∗
Thus, the dynamic paths of consumption and capital (i.e. the saddlepath) may be approximated

in the location of equilibrium by a stable first-order vector autoregression in which the parameters

Q and λ1 are obtained from A, and hence the model parameters.

2.6. In continuous time the basic centrally-planned economy problem can be written as: max-

imize
R∞
0
e−θtu(ct)dt with respect {ct, kt} subject to the budget constraint F (kt) = ct +

.

kt + δkt.

(a) Obtain the solution using the Calculus of Variations.

(b) Obtain the solution using the Maximum Principle.

(c) Compare these solutions with the discrete-time solution of Chapter 2.

Solution

(a) The generic Calculus of Variations problem is concerned with choosing a path for xt to

maximize
R∞
0
f(xt,

.
xt, t)dt where

.
xt =

dxt
dt and xt can be a vector. The first order conditions (i.e.

the Euler equations) are ∂ft
∂xt
− d

dt(
∂ft
∂
.
xt
) = 0.
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Consider the Lagrangian for this problem

Lt =
R∞
0
{e−θtu(ct)dt+ λt[F (kt)− ct −

.

kt − δkt]}dt

where λt is the Lagrange multiplier. We therefore define

f(xt,
.
xt, t) = e−θtu(ct)dt+ λt[F (kt)− ct −

.

kt − δkt]

and xt = {ct, kt, λt}0. The first-order conditions are

∂ft
∂ct
− d

dt
(
∂ft
∂
.
ct
) = e−θtu0(ct)− λt = 0

∂ft
∂kt
− d

dt
(
∂ft

∂
.

kt
) = λt[F

0(kt)− δ] +
.

λt = 0

∂ft
∂λt
− d

dt
(
∂ft

∂
.

λt
) = F (kt)− ct −

.

kt − δkt = 0

Noting that

.

λt = −θe−θtu0(ct) + e−θt
d

dt
[u0(ct)]

= e−θtu0(ct){
d
dt [u

0(ct)]

u0(ct)
− θ}

= λt{
d
dt [u

0(ct)]

u0(ct)
− θ} = 0,

by eliminating the Lagrange multipliers we may obtain from the second first-order condition the

fundamental Euler equation

−
d
dt [u

0(ct)]

u0(ct)
= F 0(kt)− δ − θ.

In steady-state, when ct is constant, this gives the usual steady-state solution for the capital stock

that F 0(kt) = δ + θ.

(b) The Maximum Principle is concerned with choosing {xt, zt} to maximise
R∞
0
f(xt, zt, t)dt

subject to the constraint
.
xt(=

dxt
dt ) = g(xt, zt, t) by first defining the Hamiltonian function

h(xt, zt, λt) = f(xt, zt, t) + λtg(xt, zt, t)

The first order conditions are then
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(i) ∂ht
∂xt

= −
.

λt

(ii) ∂ht
∂zt

= 0

(iii) ∂ht
∂λt

=
.
xt

The Hamiltonian for this problem is

h(xt, zt, λt) = e−θtu(ct) + λt[F (kt)− ct − δkt]

where xt = kt and zt = ct. The first-order conditions are therefore

(i)
∂ht
∂kt

= λt[F
0(kt)− δ] = −

.

λt

(ii)
∂ht
∂ct

= e−θtu0(ct)− λt = 0

(iii)
∂ht
∂λt

= F (kt)− ct − δkt =
.

kt

These are identical to those we derived using the Calculus of Variations and so we obtain exactly

the same solution.

(c) We have already noted that the steady-state solution for the capital stock is the same in

continuous and discrete time. Comparing the Euler equations. For the discrete case

β
Uc,t+1
Uc,t

[Fk,t+1 + 1− δ] = 1.

Hence

β[1 +
∆Uc,t+1
Uc,t

][Fk,t+1 + 1− δ] = 1

or

−∆Uc,t+1
Uc,t

=
Fk,t+1 − δ − θ

Fk,t+1 + 1− δ

which may be compared with −
d
dt [u

0(ct)]
u0(ct)

= F 0(kt)− δ− θ. Apart from the discrete change instead

of the continuous derivative on the left-hand side (where the limit is taken from above), the

differences on the right-hand side are the timing of capital and the presence of the demoninator.

As Fk,t+1 − δ = rt+1, the net rate of return to capital, and this is θ in the steady-state, the
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denominator is approximately 1 + θ. This reveals that it is the different way of discounting in

continuous from discrete time, together with the treatment of time itself, that are the main causes

of the difference between the two solutions.
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Chapter 3

3.1. Re-work the optimal growth solution in terms of the original variables, i.e. without first

taking deviations about trend growth.

(a) Derive the Euler equation

(b) Discuss the steady-state optimal growth paths for consumption, capital and output.

Solution

(a) The problem is to maximize
∞X
s=0

βsU(Ct+s)

where U(Ct) =
C1−σ
t −1
1−σ , subject to the national income identity, the capital accumulation equation,

the production function and the growth of population n:

Yt = Ct + It

∆Kt+1 = It − δKt

Yt = (1 + μ)tKα
t N

1−α
t

Nt = (1 + n)tN0, N0 = 1

The Lagrangian for this problem written in terms of the original variables is

Lt =
∞X
s=0

{βs
"
C1−σt+s − 1
1− σ

#
+ λt+s[φ

t+sKα
t+s − Ct+s −Kt+s+1 + (1− δ)Kt+s]}

where φ = (1 + μ)(1 + n)(1−α) ' (1 + η)1−α, η = n+ μ
1−α . The first-order conditions are

∂Lt
∂Ct+s

= βsC−σt+s − λt+s = 0 s ≥ 0

∂Lt
∂Kt+s

= λt+s[αφ
t+sKα−1

t+s + 1− δ]− λt+s−1 = 0 s > 0

Hence the Euler equation is

β(
Ct+1

Ct
)−σ[αφt+1Kα−1

t+1 + 1− δ] = 1
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(b) The advantage of transforming the variables as in Chapter 3 is now apparent. It enabled

us to derive the steady-state solution in a similar way to static models and hence to use previous

results. Now we need a different approach. If we assume that in steady state consumption grows

at an arbitrary constant rate γ, then the Euler equation can be rewritten

β(1 + γ)−σ[αφt+1Kα−1
t+1 + 1− δ] = 1

Hence the steady-state path of capital is

Kt = ψ−
1

1−αφ
1

1−α t

' ψ−
1

1−α (1 + η)t

where ψ = (1+θ)(1+γ)σ+δ−1
α . Hence, in steady state, capital grows approximately at the rate

η = n+ μ
1−α as before.

The production function in steady state is

Yt = φtKα
t = ψ−

α
1−αφ

1
1−α t

' ψ−
α

1−α (1 + η)t

Thus output also grows at the rate η.

The resource constraint for the economy is

Yt = Ct +∆Kt+1 − δKt

In steady state this becomes

ψ−
α

1−αφ
1

1−α t = Ct + (φ
1

1−α − 1)ψ− 1
1−αφ

1
1−α t − δψ−

1
1−αφ

1
1−α t

Hence steady-state consumption is

Ct = (2− φ
1

1−α + δ)ψ−
α

1−αφ
1

1−α t

' (2− φ
1

1−α + δ)ψ−
σ

1−α (1 + η)t
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implying that consumption grows at the same constant rate as capital and output, which confirms

our original assumption and shows that γ = η. We recall that, as the growth rates of output,

capital and consumption are the same, the optimal solution is a balanced growth path.

3.2. Consider the Solow-Swan model of growth for the constant returns to scale production

function Yt = F [eμtKt, e
νtNt] where μ and ν are the rates of capital and labor augmenting

technical progress.

(a) Show that the model has constant steady-state growth when technical progress is labor

augmenting.

(b) What is the effect of the presence of non-labor augmenting technical progress?

Solution

(a) First we recall some key results from Chapter 3. The savings rate for the economy is

st = 1− Ct
Yt
= it, the rate of investment It/Yt. The rate of growth of population is n and of capital

is ∆Kt+1

Kt
= s ytkt − δ; the growth of capital per capita is ∆kt+1kt

= s ytkt − (δ + n) and the capital

accumulation equation is ∆kt+1 = syt − (δ + n)kt where yt = Yt/Nt and kt = Kt/Nt. Hence the

sustainable rate of growth of capital per capita is

γ =
∆kt+1
kt

= s
yt
kt
− (δ + n)

For the given production function

yt
kt
= eμtF [1, e(ν−μ)tk−1t ] = eμtG[e(ν−μ)tk−1t ]

and so

γ = seμtG[e(ν−μ)tk−1t ]− (δ + n)

For the rate of growth of capital to be constant we therefore require that yt
kt
is constant. If μ = 0,

and hence technical progress is solely labor augmenting, then we simply require that kt = eνt.

The rate of growth of capital is then ν + n.
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(b) If μ 6= 0 then we have non-labor augmenting technical progress too. Consequently, in

general, we then do not obtain a constant steady-state rate of growth. For the rate of growth

of capital per capita γ to be constant we require that the function G[.] satisfies eμtG[e(ν−μ−γ)t]

being constant. If the production function is homogeneous of degree one then this condition holds

and non-labor augmenting technical progress would be consistent with steady-state growth. For

an example see the next exercise.

3.3. Consider the Solow-Swan model of growth for the production function Yt = A(eμtKt)
α(eνtNt)

β

where μ is the rate of capital augmenting technical progress and ν is the rate of labor augmenting

technical progress. Consider whether a steady-state growth solution exists under

(a) increasing returns to scale, and

(b) constant returns to scale.

(c) Hence comment on the effect of the degree of returns to scale on the rate of economic

growth, and the necessity of having either capital or labor augmenting technical progress in order

to achieve economic growth.

Solution

(a) Increasing returns to scale occurs if α+β > 1. We use the same notation as in the previous

exercise, and note that if a steady-state solution exists, then the sustainable rate of growth of

capital per capita must satisfy

γ =
∆kt+1
kt

= s
yt
kt
− (δ + n)

It follows from the production function and the growth of population Nt = ent that

yt
kt
= Ae[αμ+βν+(α+β−1)n]tk

−(1−α)
t

hence

γ = sAe[αμ+βν+(α+β−1)n]tk
−(1−α)
t − (δ + n)
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For the rate of growth of capital per capita to be constant we therefore require that

kt = e
αμ+βν+(α+β−1)n

1−α t

i.e. that

γ =
αμ+ βν + (α+ β − 1)n

1− α

Consequently, a steady-state solution exists for any α + β > 0 or any μ, ν > 0, and this also

satisfies

γ = sA− (δ + n)

which is constant.

(b) If there are constant returns to scale α+ β = 1. In this case

γ = sAe[αμ+(1−α)ν]tk
−(1−α)
t − (δ + n)

For the rate of growth of capital per capita to be constant we therefore require that

kt = e
αμ+(1−α)ν

1−α t

i.e. that

γ =
αμ+ (1− α)ν

1− α

(c) Comparing the two cases we note that, if there is no technical progress, so that μ = ν = 0,

then, with non-constant returns to scale, the rate of growth is

γ =
(α+ β − 1)n

1− α

Hence, γ R 0 as α + β R 1. In other words, even without technical progress, there is positive

growth if returns to scale are increasing but, if there are constant returns to scale, then γ = 0 and

so technical progress is required to achieve growth.
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The results in Exercises 3.2 and 3.3 also hold for optimal growth which, in effect, simply adds

the determination of the savings rate to the Solow-Swan model. In steady-state growth this is

constant.

(ii) We have also shown that with a Cobb-Douglas production function it is possible to achieve

steady-state growth with a mixture of capital and labor augmenting technical progress, or with

just capital and no labor augmenting technical progress.

3.4. Consider the following two-sector endogenous growth model of the economy due to Rebelo

(1991) which has two types of capital, physical kt and human ht. Both types of capital are required

to produce goods output yt and new human capital iht . The model is

yt = ct + ikt

∆kt+1 = ikt − δkt

∆ht+1 = iht − δht

yt = A(φkt)
α(μht)

1−α

iht = A[(1− φ)kt]
ε[(1− μ)ht]

1−ε

where ikt is investment in physical capital, φ and μ are the shares of physical and human capital

used in producing goods and α > ε. The economy maximizes Vt = Σ∞s=0β
s c

1−σ
t+s

1−σ .

(a) Assuming that each type of capital receives the same rate of return in both activities, find

the steady-state ratio of the two capital stocks

(b) Derive the optimal steady-state rate of growth.

(c) Examine the special case of ε = 0.

Solution
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(a) Eliminating yt, ikt and iht , the Lagrangian for this problem may be written as

Lt = Σ∞s=0{βs
c1−σt+s

1− σ
+ λt+s[A(φkt+s)

α(μht+s)
1−α − ct+s − kt+s+1 + (1− δ)kt+s]

+γt+s[A[(1− φ)kt+s]
ε[(1− μ)ht+s]

1−ε − ht+s+1 + (1− δ)ht+s]}

This must be maximized with respect to ct+s, kt+s, ht+s and the Lagrange multipliers λt+s and

γt+s. The first-order conditions are

∂Lt
∂ct+s

= βsc−σt+s − λt+s = 0 s ≥ 0

∂Lt
∂kt+s

= λt+s[αφA(
φkt+s
μht+s

)−(1−α) + 1− δ]− λt+s−1 + γt+sε(1− φ)A[
(1− φ)kt+s
(1− μ)ht+s

]−(1−ε) = 0, s > 0

∂Lt
∂ht+s

= λt+s(1− α)μA(
φkt+s
μht+s

)α + γt+s{(1− ε)(1− μ)A[
(1− φ)kt+s
(1− μ)ht+s

]ε + 1− δ}− γt+s−1 = 0, s > 0

Consider s = 1. As each type of capital receives the same rate of return, rt+1 say, then the net

marginal products for the two types of capital satisfy

αφA

∙
φkt+1
μht+1

¸−(1−α)
− δ = rt+1

(1− ε)(1− μ)A

∙
(1− φ)kt+1
(1− μ)ht+1

¸ε
− δ = rt+1

and rt+1 will be constant. From the rates of return, the steady-state ratio of the capital stocks is

k

h
=

"
αφ(φμ )

−(1−α)[1−φ1−μ ]
−ε

(1− ε)(1− μ)

# 1
1+ε−α

(b) If a steady-state solution exists then ct, kt, ht all grow at the same rate η, say. From the

first first-order condition λt+1 = β(1 + η)−σλt and γt+1 = β(1 + η)−σγt. The last two first-order

conditions can be written as the system of equations

aλt + bγt = 0

cλt + aγt = 0
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where a, b and c are the constants

a = β(1 + r)− (1 + η)σ

b = βε(1− φ)A
1
ε

∙
r + δ

(1− ε)(1− μ)

¸− 1−ε
ε

c = β(1− α)μA
1

1−α

∙
r + δ

αφ

¸− α
1−α

Hence,

λt
γt
= − b

a
= −a

c

or a = ±
√
bc. Only a depends on η and assuming that β = 1

1+θ we have a ' r − θ − ση. Hence

η, the steady-state rate of growth of ct, kt, ht, is

η ' 1

σ
[r − θ − a]

As a is proportional to (r + δ)−[
α

1−α+
1−ε
ε ], we can express η as a function just of k

h ; a decrease in

k
h would raise η.

(c) If ε = 0 then kt is not required in the production of ht. The consumption Euler equation

is then the familiar expression

β

µ
ct+1
ct

¶−σ
(1 + rt+1) = 1

or

β

µ
ct+1
ct

¶−σ
(αφA(

φkt+1
μht+1

)−(1−α) + 1− δ) = 1

Thus, the steady-state rate of growth of consumption is

η =

µ
1 + r

1 + θ

¶ 1
σ

− 1

' 1

σ
(r − θ)

As β = 1
1+θ , then if private saving continues until its rate of return equals that of private capital k,

the steady-state growth rate is zero. In contrast, in part (b) due to human capital accumulation,

we can have economic growth even if r = θ.
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Chapter 4

4.1. The household budget constraint may be expressed in different ways from equation (4.2)

where the increase in assets from the start of the current to the next period equals total income

less consumption. Derive the Euler equation for consumption and compare this with the solution

based on equation (4.2) for each of the following ways of writing the budget constraint:

(a) at+1 = (1 + r)(at + xt − ct), i.e. current assets and income assets that are not consumed

are invested.

(b) ∆at + ct = xt + rat−1, where the dating convention is that at denotes the end of period

stock of assets and ct and xt are consumption and income during period t.

(c) Wt = Σ
∞
s=0

ct+s
(1+r)s = Σ

∞
s=0

xt+s
(1+r)s + (1 + r)at, where Wt is household wealth.

Solution

(a) The Lagrangian is now defined as

Lt =
∞X
s=0

{βsU(ct+s) + λt+s[(1 + r)(at+s + xt+s − ct+s)− at+s+1]}

The first-order conditions are

∂Lt
∂ct+s

= βsU 0(ct+s)− λt+s(1 + r) = 0 s ≥ 0

∂Lt
∂at+s

= λt+s(1 + r)− λt+s−1 = 0 s > 0

Once again, eliminating λt+s and setting s = 1 gives the Euler equation

βU 0(ct+1)

U 0(ct)
(1 + r) = 1

(b) The Lagrangian is now

Lt =
∞X
s=0

{βsU(ct+s) + λt+s[xt+s + (1 + r)at+s−1 − ct+s − at+s]}

The first-order conditions are

∂Lt
∂ct+s

= βsU 0(ct+s)− λt+s = 0 s ≥ 0

∂Lt
∂at+s

= λt+s+1(1 + r)− λt+s = 0 s > 0
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Eliminating λt+s and setting s = 1 again gives the Euler equation
βU 0(ct+1)
U 0(ct)

(1 + r) = 1.

(c) In this case the Lagrangian only has a single constraint, and not a constraint for each

period. It can be written as

Lt =
∞X
s=0

βsU(ct+s) + λt[
∞X
s=0

xt+s − ct+s
(1 + r)s

+ (1 + r)at]}

As at is given, we only require the first-order condition for ct+s, which is

∂Lt
∂ct+s

= βsU 0(ct+s)− λt
1

(1 + r)s
= 0 s ≥ 0

Combining the first-order conditions for s = 0 and s = 1 enables us to eliminate λt to obtain

λt = βU 0(ct+1)(1 + r) = U 0(ct)

or βU 0(ct+1)
U 0(ct)

(1 + r) = 1, the same Euler equation as before.

We have shown, therefore, that expressing the household’s problem in any of these three

alternative ways produces the same Euler equation as in Chapter 4.

4.2. The representative household is assumed to choose {ct, ct+1,...} to maximise Vt =
P∞

s=0 β
sU(ct+s),

0 < β = 1
1+θ < 1 subject to the budget constraint ∆at+1+ ct = xt+ rtat where ct is consumption,

xt is exogenous income, at is the (net) stock of financial assets at the beginning of period t and r

is the (constant ) real interest rate.

(a) Assuming that r = θ and using the approximation U 0(ct+1)
U 0(ct)

= 1 − σ∆ ln ct+1, show that

optimal consumption is constant.

(b) Does this mean that changes in income will have no effect on consumption? Explain.

Solution

(a) In view of the previous exercise we go straight to the Euler equation which we write as

βU 0(ct+1)

U 0(ct)
(1 + r) = 1
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Using the approximation U 0(ct+1)
U 0(ct)

= 1−σ∆ ln ct+1 and noting that r = θ, the future rate of growth

of consumption along the optimal path is

∆ ln ct+1 =
r − θ

σ
= 0

i.e. optimal consumption is constant.

(b) Strictly, this result should be interpreted as saying that the future optimal level of con-

sumption is the same as the curent level of consumption if current and future income are correctly

anticipated in period t. In other words, correctly anticipated income has no effect on consumption

beyond that already incorporated in current consumption ct. However, if future income is not

correctly anticipated then this result no longer holds. In order to analyse this case we should

take explicit account of the role of expectations; so far we have ignored the distinction. Thus, we

should express the above result as (see Chapter 10)

Etct+1 = ct

From the inter-temporal budget constraint, in period t expected optimal consumption is

ct = rEt

∞X
s=0

xt+s
(1 + r)s+1

+ rat

and ct+1 is expected to be

Etct+1 = rEt

∞X
s=0

xt+s+1
(1 + r)s+1

+ rEtat+1

But in fact it is

ct+1 = Et+1ct+1 = rEt+1

∞X
s=0

xt+s+1
(1 + r)s+1

+ rat+1

Hence,

ct+1 −Etct+1 = r
∞X
s=0

Et+1xt+s+1 −Etxt+s+1
(1 + r)s+1

+ r(at+1 −Etat+1)

Because at+1 is given at the start of period t+ 1, we have at+1 − Etat+1 = 0. Thus, any change

in the expectation of income between periods t and t+ 1 would have an effect on consumption in
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period t + 1 - and beyond. In particular, consider an unanticipated increase in income solely in

period t+ 1 so that Etxt+1 6= Et+1xt+1 = xt+1. It follows that

ct+1 −Etct+1 =
r

1 + r
(xt+1 −Etxt+1) 6= 0

even though we still have ct+1 − Etct+1 = ct+1 − ct. In other words, income can affect optimal

consumption; for example, an unanticipated change in future in income will affect consumption.

4.3 (a) Derive the dynamic path of optimal household consumption when the utility func-

tion reflects exogenous habit persistence ht and the utility function is U(ct) =
(ct−ht)1−σ

1−σ . and

household budget constraint is ∆at+1 + ct = xt + rat.

(b) Hence, obtain the consumption function making the assumption that β(1 + r) = 1. Com-

ment on the case where expected future levels of habit persistence are the same as those in the

current period, i.e. ht+s = ht for s ≥ 0.

Solution

(a) From Exercise 4.1 the Euler equation for this problem is

β

∙
ct+1 − ht+1
ct − ht

¸−σ
(1 + r) = 1

or

ct+1 − ht+1 = [β(1 + r)]−
1
σ (ct − ht)

Hence consumption follows a simple difference equation.

(b) To obtain the consumption function we solve the budget constraint forwards to get

at = Σ
∞
s=0

ct+s − xt+s
(1 + r)s+1

Hence,

at = Σ∞s=0
[xt+s − ht+s]− [ct+s − ht+s]

(1 + r)s+1

= Σ∞s=0
xt+s − ht+s
(1 + r)s+1

− 1
r
(ct − ht)
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The consumption function is therefore

ct = ht + rΣ∞s=0
xt+s − ht+s
(1 + r)s

+ rat

If ht+s = ht for s ≥ 0, then this reduces to the standard consumption function

ct =
r

1 + r
Σ∞s=0

xt+s
(1 + r)s

+ rat.

4.4. Derive the behavior of optimal household consumption when the utility function reflects

habit persistence of the following forms:

(a) U(ct) = − (ct−γct−1)
2

2 + α(ct − γct−1)

(b) U(ct) =
(ct−γct−1)1−σ

1−σ .

where the budget constraint is ∆at+1 + ct = xt + rat.

(c) Compare (b) with the case where U(ct) =
(ct−ht)1−σ

1−σ and ht is an exogenous habitual level

of consumption.

Solution

(a) The Lagrangian is

Lt =
∞X
s=0

{βs[−(ct+s − γct+s−1)
2

2
+α(ct+s − γct+s−1)] + λt+s[xt+s + (1+ r)at+s − ct+s − at+s+1]}

The first-order conditions are

∂Lt
∂ct+s

= −βs[α− (ct+s − γct+s−1)]− βs+1γ[α− (ct+s+1 − γct+s)]− λt+s = 0 s ≥ 0

∂Lt
∂at+s

= λt+s(1 + r)− λt+s−1 = 0 s > 0

The Euler equation is

β[α− (ct+s+1 − γct+s)] + β2γ[α− (ct+s+2 − γct+s+1)]

[α− (ct+s − γct+s−1)]βγ[α− (ct+s+1 − γct+s)]
(1 + r) = 1

From the Euler equation it can be shown that consumption evolves according to a third-order

difference equation.
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Introducing the lag operators Lct = ct−1 and L−1ct = ct+1, and assuming that β(1 + r) ≥ 1,

the Euler equation can be written as

(1− γL)(1− 1

β(1 + r)
L)(1 + βγL−1)ct = α(1 + βγ)(1− 1

β(1 + r)
)

Hence there are two stable roots 1
γ and β(1 + r) and one unstable root − 1

βγ . The change in

consumption therefore has a saddlepath solution. But as the right-hand side is constant, so is the

forward-looking component of the solution. This can be seen by writing the solution as

(1− γL)(1− 1

β(1 + r)
L)ct = α(1 + βγ)(1− 1

β(1 + r)
)Σ∞s=0(−βγ)s

= α(1− 1

β(1 + r)
)

Consequently, the solution reduces to a stable second-order difference equation.

We note that if β(1 + r) = 1 then the solution has a unit root and the right-hand side is zero,

i.e. it is

∆ct+1 = γ∆ct

This solution can also be written as ∆(ct+1 − γct) = 0, which is the form in which dynamics are

introduced in the utility function.

(b) The Lagrangian is now

Lt =
∞X
s=0

{βs (ct+s − γct+s−1)
1−σ

1− σ
+ λt+s[xt+s + (1 + r)at+s − ct+s − at+s+1]}

and the first-order conditions are

∂Lt
∂ct+s

= βs(ct+s − γct+s−1)
−σ − βs+1γ(ct+s+1 − γct+s)

−σ − λt+s = 0 s ≥ 0

∂Lt
∂at+s

= λt+s(1 + r)− λt+s−1 = 0 s > 0

The Euler equation is therefore

β(ct+1 − γct)
−σ − β2γ(ct+2 − γct+1)

−σ

(ct − γct−1)−σ − βγ(ct+1 − γct)−σ
(1 + r) = 1
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This is a nonlinear difference equation which has no closed-form solution.

An alternative is to seek a local approximation to the Euler equation which does have a solution.

The Euler equation can be re-written in terms of the rate of growth of consumption, ηt say. It can

then be shown that the Euler equation can be approximated by a second-order difference equation

in ηt.

(c) Comparing these two habit-persistence models with that of Exercise 4.3, we note first that

choosing an exogenous level of habit persistence, as in Exercise 4.3, greatly simplifies the analysis.

But, especially in empirical finance, it is common to implement exogenous habit persistence by

replacing ht in the Euler equation for Exercise 4.3 by γct−1. Whilst it it makes sense to base

habit persistence on past consumption, it is clear from Exercise 4.4 that this assumption should

be introducing from the outset and not after the Euler equation is obtained as the solutions are

very different.

4.5. Suppose that households have savings of st at the start of the period, consume ct but

have no income. The household budget constraint is ∆st+1 = r(st− ct), 0 < r < 1 where r is the

real interest rate.

(a) If the household’s problem is to maximize discounted utility Vt = Σ
∞
s=0β

s ln ct+swhere

β = 1
1+r ,

(i) show that the solution is ct+1 = ct

(ii) What is the solution for st?

(b) If the household’s problem is to maximize expected discounted utility Vt = EtΣ
∞
s=0β

s ln ct+s

(i) show that the solution is 1
ct
= Et[

1
ct+1

]

(ii) Using a second-order Taylor series expansion about ct show that the solution can be

written as Et[
∆ct+1
ct

] = Et[(
∆ct+1
ct

)2]
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(iii) Hence, comment on the differences between the non-stochastic and the stochastic

solutions.

Solution

(a) (i) The Lagrangian is

Lt =
∞X
i=0

{βi ln ct+i + λt+i[(1 + r)st+i − rct+i − st+i+1]}

and the first-order conditions are

∂Lt
∂ct+i

= βi
1

ct+i
− λt+ir = 0 i ≥ 0

∂Lt
∂st+i

= λt+i(1 + r)− λt+i−1 = 0 i > 0

The Euler equation is

βct(1 + r)

ct+1
= 1

Hence ct+1 = ct.

(ii) From the budget constraint,

st =
1

1 + r
(st+1 + rct)

= rΣ∞i=0
ct+i

(1 + r)i+1

= ct

(b) (i) Introducing conditional expectations and using stochastic dynamic programming gives

the result for the Euler equation given in Chapter 10. This is

Et[
βU 0(ct+1)

U 0(ct)
(1 + r)] = 1

As U(ct) = ln ct, this becomes

Et(
1

ct+1
)

1
ct

β(1 + r) = 1
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hence

1

ct
= Et(

1

ct+1
)

(ii) Expanding Et(
1

ct+1
) in a second-order Taylor series about ct gives

Et(
1

ct+1
) ' 1

ct
− 1

c2t
Et(ct+1 − ct) +

1

c3t
Et(ct+1 − ct)

2

=
1

ct
− 1

ct
Et(
∆ct+1
ct

) +
1

ct
Et(
∆ct+1
ct

)2

The Euler equation therefore implies that

Et(
∆ct+1
ct

) = Et(
∆ct+1
ct

)2

(iii) The diference between the stochastic and the non-stochastic solutions arises because

Et(
1

ct+1
) 6= 1

Et(ct+1)
.

4.5. Suppose that households seek to maximize the inter-temporal quadratic objective function

Vt = −
1

2
Et

∞X
s=0

βs[(ct+s − γ)2 + φ(at+s+1 − at+s)
2], β =

1

1 + r

subject to the budget constraint

ct + at+1 = (1 + r)at + xt

where ct is consumption, at is the stock of assets and xt is exogenous.

(a) Comment on the objective function.

(b) Derive expressions for the optimal dynamic behaviors of consumption and the asset stock.

(c) What is the effect on consumption and assets of a permanent shock to xt of ∆x? Comment

on the implications for the specification of the utility function.

(d) What is the effect on consumption and assets of a temporary shock to xt that is unantici-

pated prior to period t?

(e) What is the effect on consumption and assets of a temporary shock to xt+1 that is antici-

pated in period t?
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Solution

(a) The objective function may be regarded as an approximation to the standard problem of

maximizing the present value of the discounted utility of consumption where the utility function

is approximated by a second-order Taylor series expansion. In the case of xt stationary about a

constant value, the optimal solution to the standard problem is a constant level of consumption

which is represented by γ and a constant level of assets at. If the aim is constant assets as here,

then from the budget constraint

ct = rat + xt

hence, intuitively, for stationary xt

E(ct) = γ = rE(a) +E(xt)

(b) The solution may be obtained most easily by eliminating the term in the change in the

asset stock in the objective function by substitution from the budget constraint. The objective

function then becomes

Vt = −
1

2
Et

∞X
s=0

βs[(ct+s − γ)2 + φ(rat+s + xt+s − ct+s)
2]

Maximizing this with respect to ct+s and at+s gives the first-order conditions

∂Vt
∂ct+s

= −βsEt[(ct+s − γ)− φ(rat+s + xt+s − ct+s)] = 0, s ≥ 0

∂Vt
∂at+s

= −φβsrEt(rat+s + xt+s − ct+s) = 0, s > 0

Hence

Etat+s =
1

r
Et(ct+s − xt+s)

and so

Etct+s = γ, s ≥ 0

Etat+s =
1

r
(γ −Etxt+s), s > 0
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where at is given. In long-run static equilibrium this implies that E(c) = E(x) = γ and E(a) = 0.

If xt were growing over time then intuitively the optimal level of consumption would grow with

xt.

(c) A permanent increase in xt unanticipated prior to period t will have no effect on ct which

will remain equal to γ. But it will reduce the stock of assets by ∆xr , where ∆x is the permanent

change in xt.

This is an implausible result. It is due to the constant target of γ for consumption which, as

noted, only makes sense if the mean of xt stays constant. A more plausible specification for the

utility function would set target consumption at the new mean value of xt, namely, E(xt)+∆x. In

this case optimal long-run consumption would increase by∆x and assets would remain unchanged.

(d) An unanticipated temporary increase in xt of ∆xt will have no effect on ct but will raise

at+1, at+2, at+3,..... From the budget constraint

at+1 = (1 + r)at + xt +∆xt − γ

at+2 = (1 + r)at+1 + xt − γ

= (1 + r)2at + (2 + r)(xt − γ) + (1 + r)∆xt

at+3 = (1 + r)at+1 + xt − γ

= (1 + r)3at +Σ
3
i=0(1 + r)i−1(xt − γ) + (1 + r)2∆xt

Hence, lim
n→∞

Etat+n =∞. Again this makes little sense.

Recalling our previous discussion that a plausible target for consumption is E(xt) rather than

γ, the second term for at+3 would be zero. It then follows from the budget constraint that

at+1 = (1 + r)at which requires that at = 0, i.e. consumption is entirely from non-asset income

and total savings would be zero. The first term for at+3 is now eliminated. Finally, we note that

shocks to xt are a mean zero process. This implies that in the future negative shocks are expected

to offset positive shocks implying that on average at is zero.
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(e) A temporary increase in xt+1 anticipated in period t does not affect consumption as

Etct+s = γ for all s. But it will affect the stock of assets in every period from period t + 1.

In period t+ 1

Etat+1 =
1

r
(γ −Etxt+1)

=
1

r
(γ − xt −∆x)

As Etxt+1 = xt, in period t+ 2, from the budget constraint,

Etat+2 = (1 + r)Etat+1 + Etxt+2 − γ

=
1

r
(γ − xt)−

1 + r

r
∆x

Similarly, in period t+ 3

Etat+3 = (1 + r)Etat+2 + Etxt+3 − γ

=
1

r
(γ − xt)−

(1 + r)2

r
∆x

Following the logic of parts (c) and (d), γ = xt, at = 0 and E(∆x) = 0, hence lim
n→∞

Etat+n = 0.

4.6. Households live for periods t and t+1. The discount factor for period t+1 is β = 1. They

receive exogenous income xt and xt+1, where the conditional distribution of income in period t+1

is N(xt, σ2), but they have no assets.

(a) Find the level of ct that maximises Vt = U(ct) + EtU(ct+1) if the utility function is

quadratic: U(ct) = −12c2t + αct, (α > 0).

(b) Calculate the conditional variance of this level of ct and hence comment on what this

implies about consumption smoothing.

Solution

(a) This problem can be expressed as maximizing

Vt = −
1

2
(c2t +Etc

2
t+1) + α(ct +Etct+1)}
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with respect to ct and ct+1 subject the two-period inter-temporal constraint

ct +Etct+1 = xt +Etxt+1

The Lagrangian is

Lt = −
1

2
(c2t +Etc

2
t+1) + α(ct +Etct+1) + λ(xt +Etxt+1 − ct −Etct+1)

The first-order conditions are

∂Lt
∂ct

= −ct + α− λ = 0

∂Lt
∂ct+1

= −Etct+1 + α− λ = 0

Hence,ct = Etct+1. From the two-period budget constraint,

ct =
1

2
(xt +Etxt+1) = xt

Optimal consumption in period t is therefore half cumulated total expected income which is xt.

(b) As xt as known in period t, the conditional distribution of ct is N(xt, σ
2

4 ). Hence inter-

temporal optimization has resulted in reducing the volatility of consumption compared with that

of income. In other words, consumption smoothing has occurred despite the absence of assets.

4.7. An alternative way of treating uncertainty is through the use of contingent states st,

which denotes the state of the economy up to and including time t, where st = (st, st−1,...) and

there are S different possible states with probabilities p(st). The aim of the household can then be

expressed as maximizing over time and over all possible states of nature the expected discounted

sum of current and future utility

Σt,sβ
tp(st)U [c(st)]

subject to the budget constraint in state st

c(st) + a(st) = [1 + r(st)]a(st−1) + x(st)
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where c(st) is consumption, a(st) are assets and x(st) is exogenous income in state st. Derive the

optimal solutions for consumption and assets.

Solution

The Lagrangian for this problem is

L = Σt,s{βtp(st)U [c(st)] + λ(st)[(1 + r(st))a(st−1) + x(st)− c(st)− a(st)]}

where λ(st) is the Lagrange multiplier in state st. The first-order conditions are

∂L
∂c(st)

= βtp(st)U 0[c(st)]− λ(st) = 0

∂L
∂a(st)

= λ(st+1)[1 + r(st+1)]− λ(st) = 0

∂L
∂λ(st)

= [1 + r(st)]a(st−1) + x(st)− c(st)− a(st) = 0

Hence, eliminating the Lagrange multipliers, gives the Euler equation

βp(st+1)U 0[c(st+1)]

p(st)U 0[c(st)]
[1 + r(st+1)] = 1

We note that

p(st+1)

p(st)
=

p(st+1, s
t)

p(st)
= p(st+1/st) = p(st+1/s

t)

i.e. the conditional probability of st+1 given st. Consequently, the right-hand side of the Euler

equation is, once more, the conditional expectation given information at time t of the discounted

value of one plus the rate of return evaluated in terms of period t utility. The optimal solutions

for consumption and assets are therefore as before.

4.8. Suppose that firms face additional (quadratic) costs associated with the accumulation of

capital and labor so that firm profits are

Πt = Akαt n
1−α
t − wtnt − it −

1

2
μ(∆kt+1)

2 − 1
2
ν(∆nt+1)

2

where μ, ν > 0, the real wage wt is exogenous and∆kt+1 = it−δkt. If firms maximize the expected

present value of the firm Et[Σ
∞
s=0(1 + r)−sΠt+s],
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(a) derive the demand functions for capital and labor in the long run and the short run.

(b) What would be the response of capital and labor demand to

(i) a temporary increase in the real wage in period t, and

(ii) a permanent increase in the real wage from period t?

Solution

Combining the given information and eliminating it, the firm’s problem is to maximize

Vt = EtΣ
∞
s=0(1+r)

−s[Akαt+sn
1−α
t+s −wt+snt+s−kt+s+1+(1−δ)kt+s−

1

2
μ(∆kt+s+1)

2− 1
2
ν(∆nt+s)

2]

The first-order conditions are

∂Vt
∂nt+s

= Et{(1 + r)−s[(1− α)Akαt+sn
−α
t+s − wt+s − ν∆nt+s] + (1 + r)−(s+1)ν∆nt+s+1]} = 0, s ≥ 0

∂Vt
∂kt+s

= Et{(1 + r)−s[αAkα−1t+s n
1−α
t+s + 1− δ + μ∆kt+s+1]− (1 + r)−(s−1)[1− μ∆kt+s]} = 0, s > 0

For s = 0 the labor first-order condition can be written as

∆nt =
1

1 + r
∆nt+1 +

1

ν
[(1− α)Akαt n

−α
t − wt] (5)

Thus, in steady-state, labour is paid its marginal product

F 0n = (1− α)A

µ
k

n

¶α
= w

For s = 1 the first-order condition for capital can be written as

∆kt+1 =
1

1 + r
∆kt+2 +

1

μ(1 + r)
[αAkα−1t+1 n

1−α
t+1 − δ + r] (6)

implying that in steady state capital is paid its net marginal product

F 0k − δ = αA

µ
k

n

¶−(1−α)
− δ = r

Given r and w we can solve for the steady-state values of k and n from the two long-run conditions.
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In the short run, the dynamic behavior of labor and capital is obtained from equations (5) and

(6). Both labor and capital have forward-looking solutions:

∆nt =
1

ν
EtΣ

∞
s=0(1 + r)−s[(1− α)Akαt+sn

−α
t+s − wt+s]

∆kt+1 =
1

μ
EtΣ

∞
s=0(1 + r)−(s+1)[αAkα−1t+s+1n

1−α
t+s+1 − δ + r]

Thus current changes in labor and capital respond instantly to the discounted sum of expected

future departures of their marginal products from their long-run values. And since the marginal

products depend on both labor and capital, the two current changes are determined simultaneously.

We note that, despite the costs of adjustment of labor and capital, the changes are instantaneous.
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Chapter 5

5.1. In an economy that seeks to maximize Σ∞s=0β
s ln ct+s (β = 1

1+r ) and takes output as given

the government finances its expenditures by taxes on consumption at the rate τ t and by debt.

(a) Find the optimal solution for consumption given government expendtitures, tax rates and

government debt.

(b) Starting from a position where the budget is balanced and there is no government debt,

analyse the consequences of

(i) a temporary increase in government expenditures in period t,

(ii) a permanent increase in government expenditures from period t.

Solution

(a) The national income identity for this economy can be written as

yt = ct + gt

and the government budget constraint is

∆bt+1 + Tt = gt + rbt

Tt = τ tct

The resource constraint for the economy is therefore

yt = (1 + τ t)ct + rbt −∆bt+1

The Lagrangian is

Lt =
X∞

s=0
{βs ln ct+s + λt+s[yt+s − (1 + τ t+s)ct+s − (1 + r)bt+s + bt+s+1]}

The first-order conditions are

∂Lt
∂ct+s

= βs
1

ct+s
− λt+s(1 + τ t+s) = 0 s ≥ 0

∂Lt
∂bt+s

= λt+s(1 + r)− λt+s−1 = 0 s > 0
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The Euler equation is therefore

βct
ct+1

(1 + τ t)

(1 + τ t+1)
(1 + r) = 1

or, as β = 1
1+r ,

ct
ct+1

(1 + τ t)

(1 + τ t+1)
= 1

In steady-state, when consumption is constant, so are the consumption tax rates. But in the short

run, in general, tax rates must vary in order to satisfy the government budget constraint and this

will affect consumption.

(b) From the government budget constraint we have

bt =
1

1 + r
[bt+1 + τ tct − gt]

=
X∞

s=0

µ
1

1 + r

¶s+1
(τ t+sct+s − gt+s)

if the transversality condition lims→∞Σ
∞
s=0(1 + r)−(s+1)bt+s = 0 holds. If the initial level of debt

is zero and the budget is balanced then

0 =
X∞

s=1

µ
1

1 + r

¶s+1
(τ t+sct+s − gt+s)

as gt = τ tct. From the Euler equation

(1 + τ t)ct = (1 + τ t+1)ct+1

Hence,

0 =
X∞

s=1

µ
1

1 + r

¶s+1
[(1 + τ t+s)ct+s − ct+s − gt+s]

=
(1 + τ t)ct

r
−
X∞

s=1

µ
1

1 + r

¶s+1
(ct+s + gt+s)

or, as gt = τ tct,

ct + gt = r
X∞

s=1

µ
1

1 + r

¶s+1
(ct+s + gt+s)
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And, as yt = ct + gt, with yt given, it follows that for all s ≥ 0 an increase in gt+s must be match

in each period by an equal reduction in ct+s. But this implies that tax revenues would be cut if

tax rates were unchanged. Because the government budget constraint must be satisfied, it follows

that either τ t+s, or debt, or both must increase as τ t+s ≤ 1.

(i) A temporary increase in gt of ∆g is offset by an equal temporary fall in ct. Depending on

the size of ∆g, this could be paid for by an increase in τ t of ∆τ if

gt +∆g = (τ t +∆τ)(ct −∆g)

and

τ t +∆τ ≤ 1

But debt finance of

∆b = gt +∆g − (τ t +∆τ)(ct −∆g)

would be required if τ t +∆τ would otherwise exceed unity.

(ii) The general principle established in Chapter 5 that, in order to satisfy the intertemporal

budget constraint, a permanent increase in government expenditures must be paid for by addi-

tional taxation, puts a constraint on the allowable size of the permanent increase in government

expenditures. Assuming a constant level of output and a constant tax rate of τ t in each period,

the maximum possible increase in taxes is 1− τ t and hence the maximum increase in government

expenditures must satisfy

gt +∆g ≤ ct −∆g

And as initially gt = τ tct we obtain

∆g ≤ 1− τ

2τ
gt

or

∆g

gt
≤ 1
2

∆τ

τ t
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Hence, the maximum proportional permanent rate of change of government expenditures cannot

exceed half the proportional rate of increase in the rate of tax.

5.2. Suppose that government expenditures gt are all capital expenditures and the stock of

government capital Gt is a factor of production. If the economy is described by

yt = ct + it + gt

yt = Akαt G
1−a
t

∆kt+1 = it − δkt

∆Gt+1 = gt − δGt

and the aim is to maximize Σ∞s=0β
s ln ct+s,

(a) obtain the optimal solution.

(b) Comment on how government expenditures are being implicitly paid for in this problem.

Solution

(a) The resource constraint is

Akαt G
1−a
t = ct + kt+1 − (1− δ)kt +Gt+1 − (1− δ)Gt

The Lagrangian for this problem is therefore

Lt = Σ∞s=0{βs ln ct+s + λt+s[Ak
α
t+sG

1−a
t+s − ct+s − kt+s+1 + (1− δ)kt+s −Gt+s+1 + (1− δ)Gt+s}

The first-order conditions are

∂Lt
∂ct+s

= βs
1

ct+s
− λt+s = 0, s ≥ 0

∂Lt
∂kt+s

= λt+s[αAk
α−1
t+s G

1−a
t+s + 1− δ]− λt+s−1 = 0, s > 0

∂Lt
∂Gt+s

= λt+s[(1− α)Akαt+sG
−a
t+s + 1− δ]− λt+s−1 = 0, s > 0
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The consumption Euler equation for s = 1 is therefore

βct
ct+1

[αAkα−1t+1 G
1−a
t+1 + 1− δ] =

βct+1
ct

[(1− α)Akαt+1G
−a
t+1 + 1− δ] = 1

Suppose that in steady state consumption grows at the rate η, and the two types of capital have

the same rate of return rt+1 where

rt+1 = αAkα−1t+1 G
1−a
t+1 − δ = (1− α)Akαt+1G

−a
t+1 − δ

In steady state, therefore,

k

G
=

α

1− α

and the steady-state rate of growth of consumption is

η = r − θ

Consequently, if β = 1
1+θ , then growth is zero: private saving is continued until its rate of return is

the rate of return to private capital. Government capital expenditures, if optimal, continue until

their rate of return is the same as the rate of return on private capital.

(b) Government capital expenditures must be paid for by taxes or borrowing. As there is no

debt in the model we may assume that taxes are being used instead and, in particular, lump-sum

taxes. To make this explicit we could re-write the national income identity so that private saving

(income after taxes less total expenditures) equals the government deficit:

(yt − Tt)− ct − it = gt − Tt

5.3. Suppose that government finances its expenditures through lump-sum taxes Tt and debt

bt but there is a cost of collecting taxes given by

Φ(Tt) = φ1Tt +
1

2
φ2T

2
t , Φ0(Tt) ≥ 0
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If the national income identity and the government budget constraint are

yt = ct + gt +Φ(Tt)

∆bt+1 + Tt = gt + rbt +Φ(Tt)

where output yt and government expenditures gt are exogenous, and the aim is to maximize

Σ∞s=0β
sU(ct+s) for β = 1

1+r ,

(a) find the optimal solution for taxes.

(b) What is the household budget constraint?

(c) Analyse the effects on taxes, debt and consumption of

(i) a temporary increase government expenditures in period t

(ii) an increase in output.

Solution

(a) Taking into account the two constraints, as both yt and gt are exogenous, the Lagrangian

is

Lt = Σ∞s=0{βsU(ct+s) + λt+s[yt+s − ct+s − gt+s − φ1Tt+s −
1

2
φ2T

2
t+s]

+μt+s[gt+s − bt+s+1 − (1 + r)bt+s − Ttt+s + φ1Tt+s +
1

2
φ2T

2
t+s]}

The first-order conditions with respect to consumption, taxes and debt are

∂Lt
∂ct+s

= βsU 0(ct+s)− λt+s = 0, s ≥ 0

∂Lt
∂Tt+s

= −(φ1 + φ2Tt+s)λt+s − μt+s(1− φ1 − φ2Tt+s) = 0, s ≥ 0

∂Lt
∂bt+s

= (1 + r)μt+s − μt+s−1 = 0, s > 0

It follows that the consumption Euler equation for s = 1 is

βU 0(ct+1)

U 0(ct)

φ1 + φ2Tt+1
φ1 + φ2Tt

1− φ1 − φ2Tt
1− φ1 − φ2Tt+1

(1 + r) = 1

Recalling that β(1 + r) = 1, there are two solutions to the Euler equation:
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(i) ct = ct+1 and Tt = Tt+1, implying that optimal consumption and taxes are constant. This

solution is a general equilibrium version of the partial equilibrium solution of Chapter 5 (see

5.7.2.5).

(ii) The alternative solution is the dynamic equation

U 0(ct)

1− 1
φ1+φ2Tt

=
U 0(ct+1)

1− 1
φ1+φ2Tt+1

(b) The implied household budget constraint is obtained by combining the national income

identity and the government budget constraint and is

yt − Tt + rbt = ct +∆bt+1

(c) We take a constant steady state as the optimal solution in answering part (c) and we re-write

the optimal solutions introducing conditional expectations so that ct = Etct+1 and Tt = EtTt+1.

(i) Assume that gt = g+εt, where εt is the temporary increase in period t. From the government

budget constraint

bt =
Tt − gt
1 + r

+
1

1 + r
Etbt+1

= Et

X∞

s=0

µ
Tt+s − gt+s
(1 + r)s+1

¶
=

Tt
r
−Et

X∞

s=0

gt+s
(1 + r)s+1

=
Tt
r
− g

r
− εt
1 + r

As bt is given, it follows that in period t

Tt = g + rbt +
r

1 + r
εt

Tt must therefore increase by r
1+rεt in order that the GBC is satisfied. And in period t + 1, as

Etεt+1 = 0 and EtTt+1 = Tt, it follows that

bt+1 =
Tt+1
r
− g

r
− εt+1
1 + r
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with

Etbt+1 =
EtTt+1

r
− g

r

=
Tt
r
− g

r

= bt +
εt
1 + r

From the household budget constraint

ct = yt − Tt + rbt −∆bt+1

= yt − (g + rbt +
r

1 + r
εt) + (1 + r)bt − (bt +

εt
1 + r

)

= yt − g − εt

Thus consumption is cut by εt. This result for consumption could also be obtained directly from

the national income identity.

(ii) An increase in income, whether temporary or permanent, will raise consumption and have

no effect on either taxes or debt.

5.4. Assuming that output growth is zero, inflation and the rate of growth of the money supply

are π, that government expenditures on goods and services plus transfers less total taxes equals z

and the real interest rate is r > 0,

(a) what is the minimum rate of inflation consistent with the sustainability of the fiscal stance

in an economy that has government debt?

(b) How do larger government expenditures affect this?

(c) What are the implications for reducing inflation?

Solution

(a) We begin by stating the government budget constraint in terms of proportions of GDP (see

Chapter 5, section 5.4)

Ptgt
Ptyt

+
Ptht
Ptyt

+
(1 +Rt)Bt

Ptyt
=

PtTt
Ptyt

+
Bt+1

Ptyt
+

Mt+1

Ptyt
− Mt

Ptyt
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When growth γt is zero, inflation πt is constant and money grows at the rate π this can be written

as

gt
yt
+

ht
yt
+ (1 +Rt)

bt
yt
=

Tt
yt
+ (1 + π)

bt+1
yt+1

+ π
mt

yt

where mt

yt
= m

y , a constant. In terms of the ratio of the primary deficit to GDP
dt
yt
this becomes

dt
yt

=
gt
yt
+

ht
yt
− Tt

yt
− π

mt

yt

=
z − πm

y

= −(1 +Rt)
bt
yt
+ (1 + π)

bt+1
yt+1

As R > π, we solve the government budget constraint forwards to obtain the sustainability

conditions

bt
yt
≤ 1

1 +R

∞X
s=0

µ
1 + π

1 +R

¶s
(
−dt+s
yt+s

)

≤ 1

R− π

d

y
=
1

r

πm− z

y

lim
n→∞

µ
1 + π

1 +R

¶n
bt+n
yt+n

= 0

It follows that, given these conditions, the minimum rate of inflation consistent with fiscal sus-

tainability is

π ≥ z + rb

m

This is to ensure that seigniorage revenues are sufficient to pay for government expenditures net

of taxes.

(b) If government expenditures increase then inflation must be allowed to rise too in order that

seigniorage revenues increase to pay for the additional expenditures.

(c) Conversely, in order to reduce inflation, either government expenditures must be reduced

or tax revenues increased.
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5.5. Consider an economy without capital that has proportional taxes on consumption and

labor and is described by the following equations

yt = Anαt = ct + gt

gt + rbt = τ ctct + τwt wtnt +∆bt+1

U(ct, lt) = ln ct + γ ln lt

1 = nt + lt

(a) State the household budget constraint.

(b) If the economy seeks to maximize Σ∞s=0β
sU(ct+s, lt+s), where β = 1

1+r , derive the optimal

steady-state levels of consumption and employment for given gt, bt and tax rates.

Solution

(a) The household budget constraint can be obtained from the national income identity and

the government budget constraint by eliminating gt. It can be written as

yt + rbt = (1 + τ ct)ct + τwt wtnt +∆bt+1

Or, as household labor income satisfies wtnt = yt,

(1− τwt )wtnt + rbt = (1 + τ ct)ct +∆bt+1

(b) The problem is to maximize inter-temporal utility subject to the national income constraint

and the government budget constraint. The Lagrangian for this problem can be written as

Lt =
X∞

s=0
{βs(ln ct+s+γ ln lt+s)+λt+s[Anαt+s−(1+τ ct+s)ct+s−τwt+swt+snt+s+(1+r)bt+s−bt+s+1]}
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The first-order conditions are

∂Lt
∂ct+s

= βs
1

ct+s
− λt+s(1 + τ ct+s) = 0 s ≥ 0

∂Lt
∂nt+s

= −βs γ

1− nt+s
+ λt+s(αAn

α−1
t+s − τwt+swt+s) = 0 s ≥ 0

∂Lt
∂bt+s

= λt+s(1 + r)− λt+s−1 = 0 s > 0

The consumption Euler equation is therefore

βct
ct+1

(1 + τ ct)

(1 + τ ct+1)
(1 + r) = 1

Consequently, as β = 1
1+r , with constant consumption tax rates, consumption is also constant.

From the first-order conditions for consumption and work we obtain the steady-state solution

γc

(1− n)
=

αAnα−1 − τww

1 + τ c

If labor is paid its marginal product then wt = αAnα−1t , and so

γc

(1− n)
=
(1− τw)w

1 + τ c

This can be shown to be the same solution that would have been obtained by maximizing

Σ∞s=0β
sU(ct+s, lt+s) subject to the household budget constraint. Solving this together with the

household budget constraint gives the solutions for c, l and n. Thus

ct =
(1− τw)w + rb

(1 + γ)(1 + τ c)

nt =
(1− τw)w − γrb

(1 + γ)(1− τw)w

5.6 (a) What is the Ramsey problem of optimal taxation?

(b) For Exercise 5 find the optimal rates of consumption and labor taxes by solving the asso-

ciated Ramsey problem.

Solution
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(a) The Ramsey problem is for government to find the optimal tax rates that are consistent

with the optimality conditions of households who are taking tax rates as given.

(b) From the first-order conditions in the solution to Exercise 5 we have λt−1
λt

= 1 + r. The

constraint imposed by households on government decisions which take into account the optimality

conditions of households can therefore be written as

(1 + τ ct)ct + bt+1 = (1− τwt )wtnt +
λt−1
λt

bt

This can be solved forwards to give the inter-temporal constraint

λt−1bt =
X∞

s=0
λt+s[(1 + τ ct+s)ct+s − (1− τwt+s)wt+snt+s]

provided the transversality condition limn→∞ λt+nbt+n+1 = 0 holds. Using the first-order condi-

tions for consumption and work, and recalling that labor is paid its marginal product, it can be

re-written as the implementability condition

λt−1bt =
X∞

s=0
βs(Uc,t+sct+s − Ul,t+snt+s)

=
X∞

s=0
βs(

1

ct+s
ct+s +

γ

1− nt+s
nt+s)

=
X∞

s=0
βs
1− (1− γ)nt+s

1− nt+s

We note that the left-hand side is pre-determined at time t.

The government’s problem is to maximize the inter-temporal utility of households subject to

the implementability condition and the economy’s resource constraint. The Lagrangian can be

written as

Lt =
X∞

s=0
{βs(ln ct+s + γ ln lt+s) + φt+s[wt+snt+s − ct+s − gt+s]}

+μ[
X∞

s=0
βs

γ

1− nt+s
− λt−1bt]

Defining

V (ct+s, lt+s, μ) = ln ct+s + γ ln lt+s + μ
γ

1− nt+s
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The Lagrangian is then

Lt =
X∞

s=0
{βsV (ct+s, lt+s, μ)

+φt+s[wt+snt+s − ct+s − gt+s]}− μλt−1bt

The first-order conditions for consumption and labor are

∂Lt
∂ct+s

= βsVc,t+s − φt+s = 0 s ≥ 0

∂Lt
∂nt+s

= −βsVl,t+s + φt+swt+s = 0 s ≥ 0

We now consider the implications of these conditions for the optimal choice of the three tax rates.

From the first-order conditions and the marginal condition for labor

Vl,t
Vc,t

= wt

=
(1 + μ)Ul,t + μ(Ucl,tct − Ull,tnt)

(1 + μ)Uc,t + μ(Ucc,tct − Ulc,tlt)

=
1 + τ ct
1− τwt

Ul,t
Uc,t

= − 1 + τ ct
1− τwt

γct
1− nt

As the utility function is homothetic, i.e. for any θ

Uc[θc, θl)]

Ul[θc, θl)]
=

Uc(c, l)

Ul(c, l)

differentiating with respect to θ and evaluating at θ = 1 gives

Ucc,tct − Ulc,tlt
Uc,t

=
Ucl,tct − Ull,tlt

Ul,t

Thus

Vl,t
Vc,t

=
Ul,t
Uc,t

or

− 1 + τ ct
1− τwt

γct
1− nt

= − γct
1− nt

The optimal rates of tax are therefore τ ct = τwt = 0, or τ
c
t = −τwt .
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Because the government must satisfy its budget constraint

gt + (1 + r)bt = τ ctct + τwt wtnt + bt+1

the optimal solutions imply that it must either use pure debt finance or tax total household saving

wtnt − ct. The government budget constraint is then

gt + (1 + r)bt = τ t(wtnt − ct) + bt+1

where τ t = τwt = −τ ct . The implication is that, given these assumptions, optimal taxation requires

that the excess of household labor income over consumption is taxed. This is not exactly the same

as taxing savings as financial assets are not being taxed - at least explicitly.
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Chapter 6

6.1. (a) Consider the following two-period OLG model. People consume in both periods but

work only in period two. The inter-temporal utility of the representative individual in the first

period is

U = ln c1 + β[ln c2 + α ln(1− n2) + γ ln g2]

where c1 and c2 are consumption and k1 (which is given) and k2 are the stocks of capital in periods

one and two, n2 is work and g2 is government expenditure in period two which is funded by a

lump-sum tax in period two. Production in periods one and two are

y1 = Rk1 = c1 + k2

y2 = Rk2 + φn2 = c2 + g2

Find the optimal centrally-planned solution for c1.

(b) Find the private sector solutions for c1 and c2, taking government expenditures as given.

(c) Compare the two solutions.

Solution

(a) The central planner maximizes U subject to the budget constraints for periods one and

two with respect to the implicit budget constraint g2 = T2 with respect to c1, c2, n2, k2 and g2.

The Lagrangian is

L = ln c1 + β[ln c2 + α ln(1− n2) + γ ln g2] + λ(Rk1 − c1 − k2) + μ(Rk2 + φn2 − c2 − g2)
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The first-order conditions are

∂L
∂c1

=
1

c1
− λ = 0

∂L
∂c2

=
β

c2
− μ = 0

∂L
∂n2

= − αβ

1− n2
+ μφ = 0

∂L
∂k2

= −λ+ μR = 0

∂L
∂g2

=
βγ

g2
− μ = 0

Hence c2 = βRc1 =
φ
α (1− n2) =

1
γ g2. And from the budget constraint k2 = c1 −Rk1. It remains

therefore to solve c1 and c2 in terms of k1. It can be shown that

c1 =
φ+R2k1

[1 + β(1 + α+ γ)]R

c2 =
β(φ+R2k1)

1 + β(1 + α+ γ)

(b) The private sector maximizes

U = ln c1 + β[ln c2 + α ln(1− n2)]

subject to its budget constraint which can be derived from the national income identities and the

government budget constraint g2 = T2. The Lagrangian for this problem is

L = ln c1 + β[ln c2 + α ln(1− n2)] + λ(Rk1 − c1 − k2) + μ(Rk2 + φn2 − c2 − g2)

where g2 could be replaced with T2. The first-order conditions are

∂L
∂c1

=
1

c1
− λ = 0

∂L
∂c2

=
β

c2
− μ = 0

∂L
∂n2

= − αβ

1− n2
+ μφ = 0

∂L
∂k2

= −λ+ μR = 0

Hence, once again, c2 = βRc1 =
φ
α(1− n2) and k2 = c1 −Rk1.
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(c) Thus the central planner chooses the same solution as the private sector. The difference is

that the central planner also chooses g2 = γc2. The reason for the similarities of the solutions is

because lump-sum taxes are not distorting.

6.2 Suppose that in Exercise 6.1 the government finances its expenditures with taxes both on

labor and capital in period two so that the government budget constraint is

g2 = τ2φn2 + (R−R2)k2

where R2 is the after-tax return to capital and τ2 is the rate of tax of labor in period two. Derive

the centrally-planned solutions for c1 and c2.

Solution

The Lagrangian for the central planner’s problem is

L = ln c1 + β[ln c2 + α ln(1− n2) + γ ln g2] + λ(Rk1 − c1 − k2) + μ(Rk2 + φn2 − c2 − g2)

+ν[g2 − τ2φn2 − (R−R2)k2]

The first-order conditions are

∂L
∂c1

=
1

c1
− λ = 0

∂L
∂c2

=
β

c2
− μ = 0

∂L
∂n2

= − αβ

1− n2
+ μφ− ντ2φ = 0

∂L
∂k2

= −λ+ μR− ν(R−R2) = 0

∂L
∂g2

=
βγ

g2
− μ = 0

These equations, together with the constraints, form the required necessary conditions. The

solutions for c1 and c2 can be shown to be the same as in Exercise 6.1.

6.3. (a) Continuing to assume that the government budget constraint is as defined in Exercise
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6.2, find the private sector solutions for c1 and c2 when government expenditures and tax rates

are pre-announced.

(b) Why may this solution not be time consistent?

Solution

(a) The private sector’s solution is obtained by first eliminating g2 to give the constraint

c2 = R2k2 + (1− τ2)φn2

The inter-temporal utility function is maximized subject to two constraints to give the Lagrangian

L = ln c1 + β[ln c2 + α ln(1− n2)] + λ(Rk1 − c1 − k2)

+μ[R2k2 + (1− τ2)φn2 − c2]

The first-order conditions are

∂L
∂c1

=
1

c1
− λ = 0

∂L
∂c2

=
β

c2
− μ = 0

∂L
∂n2

= − αβ

1− n2
+ μ(1− τ2)φ = 0

∂L
∂k2

= −λ+ μR2 = 0

∂L
∂g2

=
βγ

g2
− μ = 0

The solutions are c2 = βRc1 =
(1−τ2)φ

α (1− n2) and k2 = c1 −Rk1. Hence,

c1 =
RR2k1 + (1− τ2)φ

R2 + βR(1 + α)

c2 = βR
RR2k1 + (1− τ2)φ

R2 + βR(1 + α)

These solutions are different from the solutions for c1 and c2 in Exercises 6.1 and 6.2.

(b) The solutions depend on the rates of labor tax τ2 and capital tax R−R2. As a result, if it

is optimal for government to change these rates of tax in period two, this would affect the above

solution which would not therefore be time consistent.
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6.4 For Exercise 6.3 assume now that the government optimizes taxes in period two taking k2

as given as it was determined in period one.

(a) Derive the necessary conditions for the optimal solution.

(b) Show that the optimal labor tax when period two arrives is zero. Is it optimal to taxe

capital in period two?

Solution

(a) The government’s problem is to maximize

U = ln c2 + α ln(1− n2) + γ ln g2

subject to the two constraints

Rk2 + φn2 = c2 + g2

g2 = τ2φn2 + (R−R2)k2

Taking period one values and k2 as given, the Lagrangian is

L = ln c2 + α ln(1− n2) + γ ln g2 + λ[Rk2 + φn2 − c2 − g2]

+μ[g2 − τ2φn2 − (R−R2)k2]

The first-order conditions are

∂L
∂c2

=
1

c2
− λ = 0

∂L
∂n2

= − α

1− n2
+ λφ− μτ2φ = 0

∂L
∂g2

=
γ

g2
− μ = 0

The first-order conditions together with the constraints provide the necessary conditions for

the solution which has no closed form as the equations are non-linear.

(b) Imposing a labor tax would be distorting. But taxing capital would not be distorting as

k2 is given and so cannot be affected by the capital tax. The capital tax, in effect, taxes the rents
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on capital. We also note that, comparing the first-order conditions for c2 and n2 in part (a) with

those in Exercises 6.1 and 6.2, if τ2 = 0 and β = R2 then we obtain the same relation between

c2 and n2, namely, c2 =
φ
α(1 − n2). From the government budget constraint the optimal rate of

capital taxation is R−R2 =
g2
k2
.

6.5. Consider the following two-period OLG model in which each generation has the same

number of people, N . The young generation receives an endowment of x1 when young and

x2 = (1 + φ)x1 when old, where φ can be positive or negative. The endowments of the young

generation grow over time at the rate γ. Each unit of saving (by the young) is invested and

produces 1+μ units of output (μ > 0) when they are old. Each of the young generation maximizes

ln c1t +
1
1+r ln c2,t+1, where c1t is consumption when young and c2,t+1 is consumption when old.

(a) Derive the consumption and savings of the young generation and the consumption of the

old generation.

(b) How do changes in φ, μ, r and γ affect these solutions?

(c) If φ = μ how does this affect the solution?

Solution

(a) Let s1 denote the savings of the young generation. The budget constraint when young in

period t is

c1t + s1 = x1

and when old in period t+ 1 is

c2,t+1 = x2 + (1 + μ)s1

= (1 + φ)x1 + (1 + μ)[x1 − c1t]

This provides an inter-temporal budget constraint. The problem, therefore, is to maximize inter-

temporal utility subject to the inter-temporal budget constraint.
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The Lagrangian is

L = ln c1t +
1

1 + r
ln c2,t+1 + λ[c2,t+1 − (1 + φ)x1 − (1 + μ)[x1 − c1t]

The first-order conditions are

∂L
∂c1t

=
1

c1t
+ λ(1 + μ) = 0

∂L
∂c2,t+1

=
1

1 + r

1

c2,t+1
+ λ = 0

and the Euler equation is

c2,t+1
c1t

1 + r

1 + μ
= 1

It follows from the inter-temporal budget constraint and the Euler equation that consumption of

the young in period t and when old in period t+ 1 are

c1t =
(2 + φ+ μ)(1 + r)

(1 + μ)(2 + r)
x1

=
1 + 1+φ

1+μ

1 + 1
1+r

x1

c2,t+1 =
1 + μ

1 + r
c1t

=
2 + φ+ μ

2 + r
x1

Because the endowment of the young increases over time at the rate γ, the general solution for

period t+ i (i ≥ 0) is

c1,t+i =
(1 + γ)i(2 + φ+ μ)(1 + r)

(1 + μ)(2 + r)
x1

c2,t+i+1 =
1 + μ

1 + r
c1,t+i =

(1 + γ)i(2 + φ+ μ)

2 + r
x1

(b) It follows that the greater is φ, the larger is consumption in both periods as resources are

greater. The greater is μ, the smaller is consumption when young but the larger is consumption

when old. In contrast, the greater is r, the larger is consumption when young and the smaller is
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consumption when old. Thus changes in φ and r cause inter-temporal substitutions in different

directions. γ determines the rate of growth of consumption over time both when young and old

as it increases resources over time.

(c) If φ = μ then consumption of the young in period t and when old in period t+ 1 are

c1t =
2(1 + r)

(2 + r)
x1

c2,t+1 =
2(1 + μ)

2 + r
x1

Hence, consumption when young is now unaffected by either φ or μ, but consumption when old

is now increased by a larger φ = μ.
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Chapter 7

7.1. An open economy has the balance of payments identity

xt −Qxmt + r∗ft = ∆ft+1

where xt is exports, xmt is imports, ft is the net holding of foreign assets, Q is the terms of trade

and r∗ is the world rate of interest. Total output yt is either consumed at home cht or is exported,

thus

yt = cht + xt.

Total domestic consumption is ct; yt and xt are exogenous.

(a) Derive the Euler equation that maximises
P∞

s=0 β
s ln ct+s with respect to {ct, ct+1,...; ft+1, ft+2,...}

where β = 1
1+θ .

(b) Explain how and why the relative magnitudes of r∗ and θ affect the steady-state solutions

of ct and ft.

(c) Explain how this solution differs from that of the corresponding closed-economy.

(d) Comment on whether there are any benefits to being an open economy in this model.

(e) Obtain the solution for the current account.

(f) What are the effects on the current account and the net asset position of a permanent

increase in xt?

Solution

(a) The main difference between this problem and the basic problem of Chapter 7 is that

output is exogenous. Consequently the national income identity is

yt = ct + xt −Qxmt

and the balance of payments may be re-written as

yt − ct + r∗ft = ∆ft+1.
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The Lagrangian is therefore

L =
∞X
s=0

{βs ln ct+s + λt+s [yt+s − ct+s − ft+s+1 + (1 + r∗)ft+s]} .

The first-order conditions with respect to {ct+s, ft+s+1; s ≥ 0} are

∂L
∂ct+s

= βs
1

ct+s
− λt+s = 0 s ≥ 0

∂L
∂ft+s

= λt+s(1 + r∗)− λt+s−1 = 0 s > 0

plus the balance of payments. The open-economy Euler equation is therefore

βct
ct+1

(1 + r∗) = 1.

(b) The Euler equation may be re-written as

ct+1
ct

=
1 + r∗

1 + θ

which shows how optimal consumption will evolve in the future. Optimal consumption will there-

fore grow, stay constant or decline according as r∗ T θ.

From the balance of payments the optimal net asset position therefore evolves as

ft+1 = yt − ct + (1 + r∗)ft

= Σsi=0(1 + r∗)s−iyt+i − (1 + r∗)Σsi=0β
ict + (1 + r∗)ft.

Whether net assets grow, stay constant or decline depends on the future behavior of yt and on

whether r∗ T θ. Consider the leading case where yt+s = yt and r∗ = θ. There is then a steady-

state level of net assets which is

f = ft =
yt+1 − ct+1

r∗
.

In other words,

ct = yt + r∗ft.

If r∗ ≷ θ then a steady state solution requires that yt grows at the same rate as consumption,

namely, r∗ − θ.
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(c) In a closed economy the net foreign asset position ft is replaced in the steady-state solution

for consumption by the stock of domestic assets.

(d) A benefit of being an open rather than a closed economy is that the stock of domestic

assets must be non-negative whereas net foreign assets may be positive or negative. Having

negative foreign assets implies that the economy is borrowing from abroad. This allows an economy

to finance a negative current account balance, and hence better smooth consumption, than an

economy that has to correct its current account deficit - possibly sharply - by reducing consumption

through a cut in imports. This was a common feature of the Bretton Woods period when there

were controls on foreign capital movements and policy was "stop-go" which increased the volatility

of business cycle fluctuations.

(e) The current account is

cat = xt −Qxmt + r∗ft

= yt − ct + r∗ft.

This is also the steady-state solution for the current account described above.

(f) A permanent increase in exports xt is equivalent in its effect on consumption to a permanent

increase in income. This causes a permanent increase in consumption, but does not affect the

current account as there is also a permanent increase in imports.

7.2. Consider two countries which consume home and foreign goods cH,t and cF,t. Each period

the home country maximizes

Ut =
h
c
σ−1
σ

H,t + c
σ−1
σ

F,t

i σ
σ−1

and has an endowment of yt units of the home produced good. The foreign country is identical

and its variables are denoted with an asterisk. Every unit of a good that is transported abroad has
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a real resource cost equal to τ so that, in effect, only a proportion 1− τ arrives at its destination.

PH,t is the home price of the home good and P ∗H,t is the foreign price of the home good. The

corresponding prices of the foreign good are PF,t and P ∗F,t. All prices are measured in terms of a

common unit of world currency.

(a) If goods markets are competitive what is the relation between the four prices and how are

the terms of trade in each country related?

(b) Derive the relative demands for home and foreign goods in each country.

(c) Hence comment on the implications of the presence of transport costs.

Note: This Exercise and the next, Exercise 7.3, is based on Obstfeld and Rogoff (2000).

Solution

(a) If markets are competitive and there are costs to trade which are borne by the importer

(i.e. with producer pricing) then the home price of the home good is lower than its price abroad.

If goods arbitrage holds this implies that

PH,t = (1− τ)P ∗H,t

(1− τ)PF,t = P ∗F,t.

Given that the terms of trade for the home and foreign economies is QT,t =
PF,t
PH,t

and Q∗T,t =
P∗F,t
P∗H,t

,

respectively, it follows that

Q∗T,t = (1− τ)2QT,t

(b) Each country maximizes utility in period t subject to their budget constraint. Ignoring all

assets, as the problem is for one period, the budget constraint for the home country is

PH,tyt = PH,tcH,t + PF,tcF,t

which can be re-written as

yt = cH,t +QT,tcF,t
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where QT,t =
PF,t
PH,t

is the terms of trade.

The Lagrangian for the home country is therefore

L =
h
c
σ−1
σ

H,t + c
σ−1
σ

F,t

i σ
σ−1

+ λt(yt − cH,t −QT,tcF,t)

and the first-order conditions are

∂L
∂cH,t

=

∙
Ut
cH,t

¸ 1
σ

− λt = 0

∂L
∂cF,t

=

∙
Ut
cF,t

¸ 1
σ

− λtQT,t = 0

Hence,

cH,t
cF,t

= Qσ
T,t =

µ
PF,t
PH,t

¶σ
For the foreign country the corresponding expression is

c∗H,t
c∗F,t

= Q∗σT,t =

Ã
P ∗F,t
P ∗H,t

!σ

= (1− τ)2σQσ
T,t

(c) First, from Q∗T,t = (1−τ)2QT,t, the greater is τ , the more the terms of trade differ between

the two countries. If there are no transport costs then the terms of trade are the same.

Second, as the ratio of expenditures on domestic goods to imports in each country is

µ
cH,t

QT,tcF,t

¶
/

Ã
c∗F,t

Q∗T,tc
∗
H,t

!
= (1− τ)(1−σ),

the greater is τ , the higher is the proportion of total expenditures on domestic goods. Obstfeld

and Rogoff suggest that this may help explain home bias in consumption.

7.3. Suppose the model in Exercise 7.2 is modified so that there are two periods and inter-

temporal utility is

Vt = U(ct) + βU(ct+1)
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where ct =
h
c
σ−1
σ

H,t + c
σ−1
σ

F,t

i σ
σ−1
. Endowments in the two periods are yt and yt+1. Foreign prices

P ∗H,t and P ∗F,t and the world interest rate are assumed given. The first and second period budget

constraints are

PH,tyt +B = PH,tcH,t + PF,tcF,t = Ptct

PH,t+1yt+1 − (1 + r∗)B = PH,t+1cH,t+1 + PF,t+1cF,t+1 = Pt+1ct+1,

where Pt is the general price level, B is borrowing from abroad in world currency units in period

t and r∗ is the foreign real interest rate. It is assumed that there is zero foreign inflation.

(a) Derive the optimal solution for the home economy, including the domestic price level Pt.

(b) What is the domestic real interest rate r? Does real interest parity exist?

(c) How is r related to τ?

Solution

(a) The budget constraints imply that the indebted country repays its debt in period t+1 and

hence must export home production in period t+ 1. Eliminating B from the budget constraints

gives the two-period inter-temporal constraint for the home country

PH,t+1yt+1 + (1 + r∗)PH,tyt = PH,t+1cH,t+1 + PF,t+1cF,t+1 + (1 + r∗)(PH,tcH,t + PF,tcF,t).

We now maximise Vt subject to this constraint.

The Lagrangian is

L = U

½h
c
σ−1
σ

H,t + c
σ−1
σ

F,t

i σ
σ−1
¾
+ βU

½h
c
σ−1
σ

H,t+1 + c
σ−1
σ

F,t+1

i σ
σ−1
¾

+λ[PH,t+1yt+1 + (1 + r∗)PH,tyt − PH,t+1cH,t+1 − PF,t+1cF,t+1

−(1 + r∗)(PH,tcH,t + PF,tcF,t)]

and the first-order conditions for i = H,F are

∂L
∂ci,t

=

∙
Ut
ci,t

¸ 1
σ

− λ(1 + r∗)Pi,t = 0

∂L
∂ci,t+1

= β

∙
Ut+1
ci,t+1

¸ 1
σ

− λPi,t+1 = 0.
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Hence the relative expenditures on home and foreign goods is

PH,tcH,t
PF,tcF,t

=

µ
PH,t
PF,t

¶1−σ
.

From total expenditure

1 =
PH,tcH,t
Ptct

+
PF,tcF,t
Ptct

=
PF,tcF,t
Ptct

∙
1 +

PH,tcH,t
PF,tcF,t

¸
=

PF,tcF,t
Ptct

"
1 +

µ
PH,t
PF,t

¶1−σ#
.

Hence,

cF,t
ct

=
P 1−σF,t

P 1−σH,t + P 1−σF,t

Pt
PF,t

.

From the consumption index

1 =

∙
cH,t
ct

¸σ−1
σ

+

∙
cF,t
ct

¸σ−1
σ

=

"
P 1−σH,t

P 1−σH,t + P 1−σF,t

Pt
PH,t

#σ−1
σ

+

"
P 1−σF,t

P 1−σH,t + P 1−σF,t

Pt
PF,t

#σ−1
σ

.

Thus

Pt =
h
P 1−σH,t + P 1−σF,t

i 1
1−σ

.

The solution for total consumption is obtain from the Euler equation for ct

βU 0(ct+1)(1 + r∗)

U 0(ct)
= 1

and the inter-temporal budget constraint

PH,t+1yt+1 + (1 + r∗)PH,tyt = Pt+1ct+1 + (1 + r∗)Ptct.

(b) If r∗ is the foreign real interest rate and r is the domestic real interest rate then nominal

interest parity implies that is

1 + r = (1 + r∗)
Pt
Pt+1
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i.e. there is real interest parity only if domestic inflation is also zero.

(c) If the home country borrows in period t and repays in period t+1 then it must export part

of its production in period t+ 1. As a result, PH,t = (1− τ)P ∗H,t but P
∗
H,t+1 = (1− τ)PH,t+1. As

foreign prices are constant

1 + r = (1 + r∗)
Pt
Pt+1

= (1 + r∗)

h
P 1−σH,t + P 1−σF,t

i 1
1−σ

h
P 1−σH,t+1 + P 1−σF,t+1

i 1
1−σ

= (1 + r∗)

h¡
(1− τ)P ∗H,t

¢1−σ
+ P 1−σF,t

i 1
1−σ

∙³
P∗H,t
1−τ

´1−σ
+ P 1−σF,t

¸ 1
1−σ

.

Hence, ∂r
∂τ < 0. Thus, the higher are transport costs, the lower is the domestic real interest rate.

7.4. Suppose the "world" is compromised of two similar countries where one is a net debtor.

Each country consumes home and foreign goods and maximizes

Vt =
∞X
s=0

βs
(cαH,t+sc

1−α
F,t+s)

1−σ

1− σ

subject to its budget constraint. Expressed in terms of home’s prices, the home country budget

constraint is

PH,tcH,t + StPF,tcF,t +∆Bt+1 = PH,tyH,t +RtBt

where cH,t is consumption of home produced goods, cF,t is consumption of foreign produced goods,

PH,t is the price of the home country’s output which is denoted yH,t and is exogenous, PF,t is

the price of the foreign country’s output in terms of foreign prices, and Bt is the home country’s

borrowing from abroad expressed in domestic currency which is at the nominal rate of interest Rt

and St is the nominal exchange rate. Interest parity is assumed to hold.

(a) Using an asterisk to denote the foreign country equivalent variable (e.g. c∗H,t is the foreign

country’s consumption of domestic output), what are the national income and balance of payments

identities for the home country?
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(b) Derive the optimal relative expenditure on home and foreign goods taking the foreign

country - its output, exports and prices - and the exchange rate as given.

(c) Derive the price level Pt for the domestic economy assuming that ct = cαH,t+sc
1−α
F,t+s.

(d) Obtain the consumption Euler equation for the home country.

(e) Hence derive the implications for the current account and the net foreign asset position.

Comment on the implications of the home country being a debtor nation.

(f) Suppose that yt < y∗t and both are constant, that there is zero inflation in each country,

Rt = R and β = 1
1+R . Show that ct < c∗t if Bt ≥ 0.

Solution

(a) Home country’s nominal national income identity is

PH,tyt = PH,t(cH,t + c∗F,t).

Its nominal balance of payments is therefore

PH,tc
∗
F,t − StPF,tcF,t −RtBt = −∆Bt+1.

Assuming interest parity, the foreign country’s balance of payments in foreign prices is therefore

PF,tcF,t − S−1t P ∗H,tcF,t −RtS
−1
t Bt = −S−1t ∆Bt+1.

(b) The home country maximizes Vt subject to its budget constraint which can be written as

PH,tyt − PH,tcH,t − StPF,tcF,t − (1 +Rt)Bt +Bt+1.

The Lagrangian is therefore

L =
∞X
s=0

(
βs
(cαH,t+sc

1−α
F,t+s)

1−σ

1− σ
+ λt+s[PH,t+syt+s − PH,t+scH,t+s − St+sPF,t+scF,t+s − (1 +Rt+s)Bt+s +Bt+s+1]

)
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and the first-order conditions for the home country are

∂L
∂cH,t+s

= βsαc
α(1−σ)−1
H,t+s cF,t+s

(1−α)(1−σ) − λt+sPH,t+s = 0 s ≥ 0

∂L
∂cF,t+s

= βs(1− α)c
α(1−σ)
H,t+s cF,t+s

(1−α)(1−σ)−1 − λt+sSt+sPF,t+s = 0 s ≥ 0

∂L
∂Bt+s

= −λt+s(1 +Rt+s) + λt+s−1 = 0 s > 0.

It follows that

cH,t
cF,t

=
α

1− α

StPF,t
PH,t

where StPF,t
PH,t

is the terms of trade. The relative expenditure on home and foreign goods is therefore

PH,tcH,t
StPF,tcF,t

=
α

1− α
.

(c) Total nominal expenditure on goods for the home economy is

Ptct = PH,tcH,t + StPF,tcF,t.

Hence

Ptct
StPF,tcF,t

=
1

1− α

and the general price level is

Pt =
Pα
H,t (StPF,t)

1−α

αα(1− α)1−α
.

(d) Noting that ct = cαH,t+sc
1−α
F,t+s and that Ptct = PH,tcH,t + StPF,tcF,t we can obtain

∂L
∂ct+s

= βsc−σt+s − λt+sPt+s = 0 s ≥ 0

hence the Euler equation can be written as

β

∙
ct
ct+1

¸σ
Pt
Pt+1

(1 +Rt+1) = 1.

(e) As the foreign country is the same

P ∗H,tc
∗
H,t

S−1t P ∗F,tc
∗
F,t

=
α

1− α
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PF,t = P ∗H,t and PH,t = P ∗F,t, the current account balance is

PH,tc
∗
F,t − StPF,tcF,t −RtBt =

1− α

α
StP

∗
H,t(c

∗
H,t − cH,t)−RtBt = −∆Bt+1.

In addition, if the two countries are the same - including having the same levels of output -

then c∗H,t = cH,t. Hence, in the absence of asymmetric country shocks, Bt = 0, i.e. net foreign

assets are zero. But if, for example, the home country starts with net debt is repaying the debt,

then

cH,t = c∗H,t +
α

1− α

1

StP ∗H,t
[∆Bt+1 −RtBt]

< c∗H,t.

If output is constant and the home country fails to maintain its consumption below that of

the foreign country then it will have a permanent current deficit, its current account position

will be unsustainable and its debt will accumulate. Home output growth could, however, make a

permanent current account deficit sustainable.

(f) As there is zero inflation in each country, Rt = R and β = 1
1+R , it follows from the Euler

equation that ct is constant and hence cH,t and cF,t are also constant. The corresponding foreign

variables are also constant. Moreover, all of the prices are constant.

From the home country’s budget constraint

PHy − Pc− (1 +R)Bt = −Bt+1

or

Bt =
1

1 +R
[Bt+1 + PHy − Pc]

= Σ∞i=0
PHy − Pc

(1 +R)i+1

=
PHy − Pc

R
.

Hence,

c =
PH
P

y −R
Bt

P
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where

PH
P
= αα(1− α)1−α

µ
PH
SP ∗H

¶1−α
and

c∗ =
P ∗H
P ∗

y∗ +R
S−1Bt

P ∗

P ∗H
P ∗

= αα(1− α)1−α
µ

PH
SP ∗H

¶1−α
.

Thus c∗ > c if Bt ≥ 0.

7.5. For the model described in Exercise 7.4, suppose that there is world central planner who

maximizes the sum of individual country welfares:

Wt =
∞X
s=0

βs

"
(cαH,t+sc

1−α
F,t+s)

1−σ

1− σ
+
[(c∗H,t+s)

α(c∗F,t+s)
1−α]1−σ

1− σ

#
.

(a) What are the constraints in this problem?

(b) Derive the optimal world solution subject to these constraints where outputs and the

exchange rate are exogenous.

(c) Comment on any differences with the solutions in Exercise 7.4.

Solution

(a) There are two national income identities

PH,tyt = PH,t(cH,t + c∗F,t)

P ∗H,ty
∗
t = P ∗H,t(c

∗
H,t + cF,t)

the balance of payments

PH,tc
∗
F,t − StPF,tcF,t −RtBt = −∆Bt+1

and PF,t = P ∗H,t and PH,t = P ∗F,t. Combining these through the balance of payments gives the

single constraint

PH,tyt − PH,tcH,t − StP
∗
H,ty

∗
t + StP

∗
H,tc

∗
H,t −RtBt = −∆Bt+1.
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(b) The Lagrangian is

L =
∞X
s=0

{βs
"
[cαH,t+s(y

∗
t+s − c∗H,t+s)

1−α]1−σ

1− σ
+
[(c∗H,t+s)

α(yt+s − cH,t+s)
1−α]1−σ

1− σ

#
+λt+s[PH,t+syt+s − PH,t+scH,t+s − St+sP

∗
H,t+sy

∗
t+s + St+sP

∗
H,t+sc

∗
H,t+s − (1 +Rt)Bt+s +Bt+s+1]}

which is maximized with respect to cH,t+s, c∗H,t+s and Bt+s. The first-order conditions are

∂L
∂cH,t+s

= βsαc
α(1−σ)−1
H,t+s (y∗t+s − c∗H,t+s)

(1−α)(1−σ) − βs(1− α)(c∗H,t+s)
α(1−σ)(yt+s − cH,t+s)

(1−α)(1−σ)−1

−λt+sPH,t+s = 0 s ≥ 0

∂L
∂c∗H,t+s

= −βs(1− α)c
α(1−σ)
H,t+s (y

∗
t+s − c∗H,t+s)

(1−α)(1−σ)−1 + βsα(c∗H,t+s)
α(1−σ)−1(yt+s − cH,t+s)

(1−α)(1−

+λt+sSt+sP
∗
H,t+s = 0 s ≥ 0

∂L
∂Bt+s

= −λt+s(1 +Rt+s) + λt+s−1 = 0 s > 0.

It follows that

cH,t
cF,t

− c∗H,t
cH,t

+ α
1−α

³
c∗H,t
cH,t

´α(1−σ) ³
cF,t
c∗F,t

´(1−α)(1−σ)
c∗H,t
cH,t
− 1−α

α

³
c∗H,t
cH,t

´α(1−σ) ³
cF,t
c∗F,t

´(1−α)(1−σ) =
α

1− α

StP
∗
H,t

PH,t

(c) Previously in Exercise 7.4 we obtained

cH,t
cF,t

=
α

1− α

StPF,t
PH,t

=
α

1− α

StP
∗
H,t

PH,t
.

If the countries are identical then cH,t = c∗H,t and cF,t = c∗F,t and the two expressions are the same.

114



Chapter 8

8.1. Consider an economy in which money is the only financial asset, and suppose that house-

holds hold money solely in order to smooth consumption expenditures. The nominal household

budget constraint for this economy is

Ptct +∆Mt+1 = Ptyt

where ct is consumption, yt is exogenous income, Pt is the price level and Mt is nominal money

balances.

(a) If households maximize Σ∞s=0β
sU(ct+s), derive the optimal solution for consumption.

(b) Compare this solution with the special case where β = 1 and inflation is zero.

(c) Suppose that in (b) yt is expected to remain constant except in period t + 1 when it is

expected to increase temporarily. Examine the effect on money holdings and consumption.

(d) Hence comment on the role of real balances in determining consumption in these circum-

stances.

Solution

(a) The Lagrangian for this problem can be written

L =
∞X
s=0

{βsU(ct+s) + λt+s[Pt+syt+s +Mt+s −Mt+s+1 − Pt+sct+s]}

where, for illustrative purposes, we have not used the real budget constraint. The first-order

conditions are

∂L
∂ct+s

= βsU 0t+s − λt+sPt+s = 0 s ≥ 0

∂L
∂Mt+s

= λt+s − λt+s−1 = 0 s > 0.

This gives the consumption Euler equation

βU 0t+1
U 0t

Pt
Pt+1

= 1.
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Assuming that β = 1
1+θ , and using πt+1 =

∆Pt+1
Pt

and the approximation

U 0t+1
U 0t

' 1− σt
∆ct+1
ct

σt = −cU
00
t

U 0t
> 0

we obtain

∆ct+1
ct

' −θ + πt+1
σ

.

Hence a steady-state in which consumption is constant requires a negative inflation rate of πt+1 =

−θ. As a result there would be a positive return to holding money, the only vehicle for savings in

this economy.

(b) If β = 1 and πt+1 = 0 then πt+1 = −θ = 0, which satisfies constant steady-state consump-

tion. From the real budget constraint

ct + (1 + πt+1)mt+1 −mt = yt

where mt =
Mt

Pt
. Consumption therefore satisfies

ct = yt −mt+1 +mt.

Hence a steady-state requires that ∆mt+1 = 0 and ct = yt.

(c) If yt+1 = y +∆y and yt+s = y for s 6= 1, then ct, mt and mt+1 are unaffected but

ct+1 = y +∆y −mt+2 +mt.

Since optimal consumption is constant, an unexpected increase in income in period t + 1 affects

only the stock of money which increases permanently in period t+ 2 to mt+2 = mt +∆y.

(d) This implies that if there is a zero discount rate and zero inflation, an increase in real

balances has no effect on steady-state consumption.
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8.2. Suppose that the nominal household budget constraint is

∆Bt+1 +∆Mt+1 + Ptct = Ptxt +RtBt

where ct is consumption, xt is exogenous income, Bt is nominal bond holding, Mt is nominal

money balances, Pt is the general price level, mt =Mt/Pt and Rt is a nominal rate of return.

(a) Derive the real budget constraint.

(b) Comment on whether or not this implies that money is super-neutral in the whole economy.

(c) If households maximize

Vt = Σ
∞
s=0β

sU(ct+s,mt+s)

where the utility function is

U(ct,mt) =

h
cαt m

1−α
t

αα(1−α)1−α
i1−σ

1− σ

obtain the demand for money.

Solution

(a) The real budget constraint is obtained by deflating the nominal budget constraint by the

general price level Pt. The real budget constraint is therefore

Pt+1
Pt

Bt+1

Pt+1
+

Pt+1
Pt

Mt+1

Pt+1
− Mt

Pt
+ ct = xt + (1 +Rt)

Bt

Pt

or

(1 + πt+1)bt+1 + (1 + πt+1)mt+1 −mt + ct = xt + (1 +Rt)bt

where bt = Bt
Pt
, mt =

Mt

Pt
and πt+1 =

∆Pt+1
Pt

is the inflation rate.

(b) Money is super-neutral if an increase in the nominal money supply has no real effects in

steady state. The real budget constraint in steady state is

c = x+ (R− π)b− πm.
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This depends on a nominal variable - inflation - and appears to show that real consumption is

reduced by the presence of an "inflation tax", πm. This is not, however, the full story as the

inflation tax also enters the government budget constraint - as tax revenues - and reduces other

taxes - such as lump-sum taxes - one-for-one. As a result, in full general equilibrium the inflation

tax does not affect real consumption and so money is super-neutral in the economy as a whole.

Money would not be super-neutral if, for example, there were additional costs associated with

supplying money or with collecting the inflation tax. For further details see Chapter 8.

(c) We have shown in Chapter 8 that maximising Vt =
P∞
0 βsU(ct+s,mt+s) subject to the

real household budget constraint gives the Lagrangian

L =
∞X
s=0

⎧⎪⎪⎨⎪⎪⎩
βsU(ct+s,mt+s) + λt+s[xt+s + (1 +Rt+s)bt+s +mt+s

−(1 + πt+s+1)(bt+s+1 +mt+s+1)− ct+s]

⎫⎪⎪⎬⎪⎪⎭
for which the first-order conditions are

∂L
∂ct+s

= βsUc, t+s − λt+s = 0 s ≥ 0

∂L
∂bt+s

= λt+s(1 +Rt+s)− λt+s−1(1 + πt+s) = 0 s > 0

∂L
∂mt+s

= βsUm, t+s + λt+s − λt+s−1(1 + πt+s) = 0 s > 0

which gives Um,t+1 = Uc,t+1Rt+1 from which we may obtain the long-run demand for money. For

the utility function in this question this specializes to

(1− α)c
α(1−σ)
t+1 mt+1

(1−α)(1−σ)−1

[αα(1− α)1−α]1−σ
=

αc
α(1−σ)−1
t+1 mt+1

(1−α)(1−σ)Rt+1

[αα(1− α)1−α]1−σ
.

Hence, the demand for money is

mt+1 =
1− α

α

ct+1
Rt+1

.

If bonds are risk free then Rt+1 is known at time t.

8.3. Consider a cash-in-advance economy with the national income identity

yt = ct + gt
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and the government budget constraint

∆Bt+1 +∆Mt+1 + PtTt = Ptgt +RtBt

where ct is consumption, yt is exogenous national income, Bt is nominal bond holding, Mt is

nominal money balances, Pt is the general price level, mt =Mt/Pt, Tt are lump-sum taxes, Rt is

a nominal rate of return and the government consumes a random real amount gt = g + et where

et is an independently and identically distributed random shock with zero mean.

(a) If households maximize Σ∞s=0β
s ln ct+s where β = 1

1+θ , derive the optimal solutions for

consumption and money holding.

(b) Comment on how a positive government expenditure shock affects consumption and money

holding.

(c) Is money super-neutral in this economy?

Solution

(a) Eliminating gt and writing the cash-in advance constraint as mt = ct, enables the real

household budget constraint to be written as

(1 + πt+1)bt+1 + (1 + πt+1)ct+1 + Tt = yt + (1 +Rt)bt.

The Lagrangian is therefore

L =
∞X
s=0

⎧⎪⎪⎨⎪⎪⎩
βs ln ct+s + λt+s[yt+s + (1 +Rt+s)bt+s+

−(1 + πt+s+1)(bt+s+1 + ct+s+1)− Tt+s]

⎫⎪⎪⎬⎪⎪⎭ .

The first-order conditions are

∂L
∂ct+s

= βsUc, t+s − λt+s−1(1 + πt+s) = 0 s ≥ 0

∂L
∂bt+s

= λt+s(1 +Rt+s)− λt+s−1(1 + πt+s) = 0 s > 0.

This gives the Euler equation

βct
ct+1

1 +Rt

1 + πt+1
= 1.
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Hence consumption is constant in steady-state if rt = Rt − πt+1 = θ.

From the budget constraint, and assuming for convenience that Rt and πt are constant with

r = R− π > 0,

bt =
1 + π

1 +R
(bt+1 + ct+1) +

1

1 +R
(Tt − yt)

=
ct
r
+

1

1 +R
Σ∞s=0

Tt+s − yt+s
(1 + r)s

.

Hence

ct = mt =
r

1 +R
Σ∞s=0

yt+s − Tt+s
(1 + r)s

+ rbt

which is the permanent income from after-tax income plus interest earnings. In steady-state,

therefore,

c = m =
1

1 + π
(y − T ) + rb.

(b) From the national income identity, a government expenditure shock et implies that

yt = ct + g + et

= y + (ct − c) + et.

If national income is fixed then consumption (and money holdings) fall as ct − c = −et. But if

national income increases then

ct = mt = c+
r

1 +R
[ct − c+ et − (Tt − T )].

It follows that

ct − c =
r

1 + π
[et − (Tt − T )].

Thus if the temporary increase in government expenditures is tax financed then there is no effect

on consumption or money holdings. But if it is not tax financed then consumption and money

holdings increase by ct − c = r
1+π et.
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(c) An increase in the nominal money stock raises the general price level one-for-one in this

economy leaving real money balances, consumption and output unaffected, and so money is super-

neutral.

8.4. Suppose that some goods c1,t must be paid for only with money Mt and the rest c2,t are

bought on credit Lt using a one period loan to be repaid at the start of next period at the nominal

rate of interest R + ρ, where R is the rate of interest on bonds which are a savings vehicle. The

prices of these goods are P1t and P2t. If households maximize Σ∞s=0(1 + R)−sU(ct+s) subject to

their budget constraint, where U(ct) = ln ct, ct =
cα1,tc

1−α
2,t

αα(1−α)1−α , and income yt is exogenous,

(a) derive the expenditures on cash purchases relative to credit.

(b) Obtain the optimal long-run solutions for c1,t and c2,t when exogenous income yt is constant.

(c) Comment on the case where there is no credit premium.

Solution

(a) For cash-only goods there is a cash-in-advance constraint Mt = P1tc1t and for credit goods

Lt+1 = P2tc2t. The nominal budget constraint is

∆Mt+1 +∆Bt+1 + (R+ ρ)Lt + Ptct = Ptyt +RBt +∆Lt+1

and total expenditure is

Ptct = P1tc1t + P2tc2t.

The budget constraint can therefore be re-written as

Bt+1 + P1,t+1c1,t+1 + (1 +R+ ρ)P2,t−1c2,t−1 = Ptyt + (1 +R)Bt.

The Lagrangian is

L =
X∞

s=0
{(1 +R)−s ln

cα1,tc
1−α
2,t

αα(1− α)1−α
+ λt+s[Pt+syt+s + (1 +Rt+s)Bt+s

−Bt+s+1 − P1,t+s+1c1,t+s+1 − (1 +R+ ρ)P2,t+s−1c2,t+s−1]}.

121



The first-order conditions are

∂L
∂c1,t+s

= (1 +R)−s
α

c1,t+s
− λt+s−1P1,t+s = 0 s ≥ 0

∂L
∂c2,t+s

= (1 +R)−s
1− α

c2,t+s
− λt+s+1(1 +R+ ρ)P2,t+s = 0 s ≥ 0

∂L
∂Bt+s

= λt+s(1 +R)− λt+s−1 = 0 s > 0.

The ratio of cash to credit is therefore

Mt

Lt+1
=

P1tc1t
P2tc2t

=
α

1− α

1 +R+ ρ

(1 +R)2
.

Thus, the larger the premium on credit ρ, or the lower the rate of interest R, the greater cash

purchases relative to credit purchases.

(b) The Euler equations are

P1,t+1c1,t+1
P1tc1t

=
P2,t+1c2,t+1

P2tc2t
= 1.

Hence nominal expenditures are constant.

From the budget constraint

Bt =
1

1 +R
[Bt+1 + P1,t+1c1,t+1 + (1 +R+ ρ)P2,t−1c2,t−1 − Ptyt]

=
1

R
[P1tc1t + (1 +R+ ρ)P2tc2t − Ptyt]

=
1

R
[
α+ (1− α)(1 +R)2

α
P1tc1t − Ptyt].

Thus

P1tc1t =
α

α+ (1− α)(1 +R)2
(Ptyt +Bt)

P2tc2t =
(1− α)(1 +R)2

[α+ (1− α)(1 +R)2](1 +R+ ρ)
(Ptyt +Bt).

(c) If there is no credit premium then

Mt

Lt+1/(1 +R)
=

α

1− α
.
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The discounted cost of borrowing is therefore equal to the cost of using cash and so the shares of

cash and credit just reflect the form of the consumption index.

8.5. Suppose that an economy can either use cash-in-advance or credit. Compare the long-run

levels of consumption that result from these choices for the economy in Exercise 8.4 when there

is a single consumption good ct.

Solution

(i) Cash-in advance

The budget constraint is

Bt+1 + P1,t+1ct+1 = Ptyt + (1 +R)Bt

and the Lagrangian is

L =
X∞

s=0
{(1 +R)−s ln ct+s + λt+s[Pt+syt+s + (1 +Rt+s)Bt+s

−Bt+s+1 − Pt+s+1ct+s+1}.

The first-order conditions are

∂L
∂ct+s

= (1 +R)−s
1

ct+s
− λt+s−1Pt+s = 0 s ≥ 0

∂L
∂Bt+s

= λt+s(1 +R)− λt+s−1 = 0 s > 0.

The Euler equation is

Pt+1ct+1
Ptct

= 1.

Hence, from the budget constraint, the long-run level of consumption is

ct = y +R
B

P
.

(ii) Credit
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The budget constraint is now

Bt+1 + (1 +R+ ρ)Pt−1ct−1 = Ptyt + (1 +R)Bt

and the Lagrangian is

L =
X∞

s=0
{(1 +R)−s ln ct+s + λt+s[Pt+syt+s + (1 +Rt+s)Bt+s

−Bt+s+1 − (1 +R+ ρ)Pt+s−1ct+s−1]}.

The first-order conditions are

∂L
∂ct+s

= (1 +R)−s
1− α

ct+s
− λt+s+1(1 +R+ ρ)Pt+s = 0 s ≥ 0

∂L
∂Bt+s

= λt+s(1 +R)− λt+s−1 = 0 s > 0.

The Euler equation is again

Pt+1ct+1
Ptct

= 1.

Hence from the budget constraint the long-run level of consumption is

ct =
y +RB

P

1 +R+ ρ
< y +R

B

P
.

It follows that consumption is lower when credit is used instead of cash and, the greater the credit

premium, the larger the disparity.

8.6. Consider the following demand for money function which has been used to study hyper-

inflation

mt − pt = −α(Etpt+1 − pt), α > 0

where Mt= nominal money, mt = lnMt, Pt= price level and pt = lnPt.

(a) Contrast this with a more conventional demand function for money, and comment on why

it might be a suitable formulation for studying hyper-inflation?
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(b) Derive the equilibrium values of pt and the rate of inflation if the supply of money is given

by

∆mt = μ+ εt

where μ > 0 and Et[εt+1] = 0.

(c) What will be the equilibrium values of pt if

(i) the stock of money is expected to deviate temporarily in period t+1 from this money

supply rule and take the value m∗t+1,

(ii) the rate of growth of money is expected to deviate permanently from the rule and

from period t+ 1 grow at the rate υ.

Solution

(a) A more conventional demand function for money includes the nominal interest rate as an ar-

gument rather than expected inflation. From the Fisher equation, the nominal interest rate equals

the nominal interest rate plus expected inflation. In hyper-inflation expected inflation is very large

relative to the real interest rate then the nominal interest rate can be closely approximated by

expected inflation, as in the Cagan money demand function.

(b) The money demand function can be solved for the price level to give the forward-looking

equation

pt =
α

1 + α
Etpt+1 +

1

1 + α
mt.

Solving forwards gives

pt =

µ
α

1 + α

¶n
Etpt+n +

1

1 + α
Σn−1s=0

µ
α

1 + α

¶s
Etmt+s.

Hence, as n→∞,

pt =
1

1 + α
Σ∞s=0

µ
α

1 + α

¶s
Etmt+s.

As ∆mt = μ+ εt

mt+s = mt + sμ+Σsi=1εt+i
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and so

Etmt+s = mt + sμ

and, as Σ∞s=0θ
ss = θ

(1−θ)2 for |θ| < 1,

pt =
1

1 + α
Σ∞s=0

µ
α

1 + α

¶s
(mt + sμ)

= mt + μ.

The rate of inflation is ∆pt = ∆mt = μ+ εt.

(c) (i) If Etmt+1 = m∗t+1, then

pt =
1

1 + α
Σ∞s=0

µ
α

1 + α

¶s
Etmt+s

= mt + αμ+
α

(1 + α)2
[m∗t+1 −mt − μ]

(ii) If Etmt+s = mt + ν + εt+1 for ṡ > 0 then

pt =
1

1 + α
Σ∞s=0

µ
α

1 + α

¶s
Etmt+s

= mt + αν.
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Chapter 9

9.1. Consider an economy that produces a single good in which households maximize

Vt =
∞X
s=0

βs
∙
ln ct+s − φ lnnt+s + γ ln

Mt+s

Pt+s

¸
, β =

1

1 + r

subject to the nominal budget constraint

Ptct +∆Bt+1 +∆Mt+1 = Ptdt +Wtnt +RBt.

where c consumption, n is employment, W is the nominal wage rate, d is total real firm net

revenues distributed as dividends, B is nominal bond holdings, R is the nominal interest rate, M

is nominal money balances, P is the price level and r is the real interest rate. Firms maximize

the present value of nominal net revenues

Πt =
∞X
s=0

(1 + r)−sPt+sdt+s

where dt = yt − wtnt, the real wage is wt =Wt/Pt and the production function is yt = Atn
α
t .

(a) Derive the optimal solution on the assumption that prices are perfectly flexible.

(b) Assuming that inflation is zero, suppose that, following a shock, for example, to the money

supply, firms are able to adjust their price with probability ρ, and otherwise price retains its

previous value. Discuss the consequences for the expected price level following the shock.

(c) Suppose that prices are fully flexible but the nominal wage adjusts to shocks with probability

ρ. What are the consequences for the economy?

Solution

The Lagrangian for households in real terms is

L =
∞X
s=0

⎧⎪⎪⎨⎪⎪⎩
(1 + r)−s [ln ct+s − φ lnnt+s + γ lnmt+s]

+λt+s[dt+s + wt+snt+s + (1 +R)bt+s +mt+s − ct+s − (1 + πt+s+1)bt+s+1 − (1 + πt+s+1)mt+s+1]

⎫⎪⎪⎬⎪⎪⎭
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where bt = Bt
Pt
, mt =

Mt

Pt
and the inflation rate πt+1 =

∆Pt+1
Pt

. The first-order conditions are

∂L
∂ct+s

= (1 + r)−s
1

ct+s
− λt+s = 0 s ≥ 0

∂L
∂nt+s

= −(1 + r)−s
φ

nt+s
+ λt+swt+s = 0 s ≥ 0

∂L
∂mt+s

= (1 + r)−s
γ

mt+s
− λt+s − λt+s−1(1 + πt+s) = 0 s > 0

∂L
∂bt+s

= λt+s(1 +R)− λt+s−1(1 + πt+s) = 0 s > 0.

The consumption Euler equation is

(1 + r)−1ct
ct+1

1 +R

1 + πt+1
=

ct
ct+1

= 1

which implies that optimal consumption is constant if inflation is constant. The supply of labor

is given by

nt = φ
ct
wt

and will also be constant if wt is constant. The demand for real money is

mt = γ
ct

1 +R
.

The firm, maximizes nominal net revenues

Πt =
∞X
s=0

(1 + r)−sPt+s(At+sn
α
t+s − wt+snt+s)

for which the first-order condition is

∂Πt
∂nt+s

= (1 + r)−sPt+s[α
yt+s
nt+s

− wt+s] = 0.

Hence the demand for labor is

nt = α
yt
wt

and dividends are

dt = yt − wtnt = (1− α)yt.
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In steady state the rate of inflation and all real variables are constant. From the real household

budget constraint the solutions for consumption, labor and money are

c = y + rb− πm

=
φ

α
c+ rb− πγ

1 +R
c

=
rb

1− φ
α +

πγ
1+R

.

It is then straightforward to find the steady-state values of the other variables.

The price level may be obtained from the money market equation m = γ c
1+R when

P =
1 +R

γ

M

c
.

As markets clear and prices are perfectly flexible the long-run demands for goods and labor

equal their long-run supplies in each period. This is the standard benchmark case.

(b) If prices are perfectly flexible, a shock to the level of the money supply will affect the price

level and the nominal wage but not the real variables. But if prices are not perfectly flexible there

will be real effects.

If firms can adjust their prices with a probability of ρ, which is less than unity then, if inflation

is zero, the expected price level in period t following a temporary shock of ε to the money supply

is

EPt = ρP ∗t + (1− ρ)P

where the fully flexible price P ∗t is

P ∗t = α
y

n

1 +R

γ

Mt

c

= P +
1 +R

γ

ε

c
.

Hence the expected price level under imperfect price flexibility is

EPt = P +
(1− ρ)(1 +R)

γ

ε

c
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where EPt > P but EPt < P ∗t .

(c) If prices are fully flexible but the nominal wage is not then the expected nominal wage is

EWt = ρW ∗t + (1− ρ)W

where the fully flexible nominal wage W ∗t is

W ∗t = φ
P ∗t c

n
=

φ(1 +R)

γ

Mt

n

= W +
φ(1 +R)

γ

ε

n
.

Hence the expected nominal wage is

EWt =W +
(1− ρ)φ(1 +R)

γ

ε

n

where EWt > W but EWt < W ∗t . This suggests that the expected real wage
EWt

P∗t
under imperfect

wage flexibility will be lower than the fully flexible real wage. This would create an incentive for

firms to increase output and employment but would inhibit the supply of labor. In this way

monetary policy could have a temporary real effect on the economy.

9.2. Consider an economy where prices are determined in each period under imperfect compe-

tition in which households have the utility function

U [ct, nt(i)] = ln ct − η lnnt(i)

with i = 1, 2. Total household consumption ct is obtained from the two consumption goods ct(1)

and ct(2) through the aggregator

ct =
ct(1)

φct(2)
1−φ

φφ(1− φ)1−φ

and nt(1) and nt(2) are the employment levels in the two firms which have production functions

yt(i) = Aitnt(i)
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and profits

Πt(i) = Pt(i)yt(i)−Wt(i)nt(i)

where Pt(i) is the output price and Wt(i) is the wage rate paid by firm i. If total consumption

expenditure is

Ptct = Pt(1)ct(1) + Pt(2)ct(2)

(a) Derive the optimal solutions for the household, treating firm profits as exogenous.

(b) Show how the price level for each firm is related to the common wage Wt and comment on

your result.

Solution

(a) The household budget constraint is

Ptct = Pt(1)ct(1) + Pt(2)ct(2)

= Wt(i)nt(i) +Πt(1) +Πt(2)

if each household holds an equal share in each firm. Households maximize utility in each period

using the Lagrangian

L = ln

µ
ct(1)

φct(2)
1−φ

φφ(1− φ)1−φ

¶
− η lnnt(i)

+λt[Wt(i)nt(i) +Πt(1) +Πt(2)− Pt(1)ct(1)− Pt(2)ct(2)].

The first-order conditions are

∂L
∂ct(1)

= φ
1

ct(1)
− λtPt(1) = 0

∂L
∂ct(2)

= (1− φ)
1

ct(2)
− λtPt(2) = 0

∂L
∂nt(i)

= −η 1

nt(i)
+ λtWt(i) = 0, i = 1, 2.

In addition

∂L
∂ct

=
1

ct
− λtPt = 0.
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This gives

Pt(1)ct(1)

Pt(2)ct(2)
=

φ

1− φ
.

From the consumption index

ct(1)

ct
= φφ(1− φ)1−φ

µ
ct(1)

ct(2)

¶1−φ
= φφ(1− φ)1−φ

µ
φ

1− φ

Pt(2)

Pt(1)

¶1−φ
= φ

µ
Pt(2)

Pt(1)

¶1−φ
ct(2)

ct
= (1− φ)

µ
Pt(1)

Pt(2)

¶φ
.

Hence

Pt = Pt(1)
ct(1)

ct
+ Pt(2)

ct(2)

ct

= Pt(1)
φPt(2)

1−φ.

The levels of employment satisfy

Wt(1)nt(1)

Pt(1)ct(1)
=

η

φ

Wt(2)nt(2)

Pt(2)ct(2)
=

η

1− φ

Wt(i)nt(i)

Ptct
= η, 1 = 1, 2.

If labour markets are competitive then Wt(i) =Wt, the common wage rate. Hence, total employ-

ment is

nt = nt(1) + nt(2) = 2η
Ptct
Wt

.

(b) Each firm maximizes its profits subject to the demand for its product as given by the

relations ct(i)
ct

above. Because ct(i) = yt(i) = Aitnt(i), the first-order condition of Πt(i) =

Pt(i)yt(i)−Wt(i)nt(i) with respect to ct(i) is

dΠt(i)

dct(i)
= Pt(i) +

∂Pt(i)

∂ct(i)
ct(i)−Wt

dnt(i)

dct(i)
= 0.
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As

dct(i)

dnt(i)
=

dyt(i)

dnt(i)
= Ait

∂ct(1)

∂Pt(1)
= −(1− φ)

ct(1)

Pt(1)

∂ct(2)

∂Pt(2)
= −φ ct(2)

Pt(2)

we obtain

Pt(1) = (1− φ)
Wt

A1t

Pt(2) = φ
Wt

A2t
.

Hence an increase inWt has different effects on firm prices due to a demand factor - their elasticity

in the consumption index - and a supply factor - the productivity of labor in each firm.

9.3. Consider a model with two intermediate goods where final output is related to intermediate

inputs through

yt =
yt(1)

φyt(2)
1−φ

φφ(1− φ)1−φ

and the final output producer chooses the inputs yt (1) and yt(2) to maximize the profits of the

final producer

Πt = Ptyt − Pt(1)yt(1)− Pt(2)yt(2)

where Pt is the price of final output and Pt(i) are the prices of the intermediate inputs. Interme-

diate goods are produced with the production function

yt(i) = Aitnt(i)
α

where nt(i) is labour input and the intermediate goods firms maximize the profit function

Πt(i) = Pt(i)yt(i)−Wtnt(i)
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where Wt is the economy-wide wage rate.

(a) Derive the demand functions for the intermediate inputs.

(b) Derive their supply functions.

(c) Hence examine whether there is an efficiency loss for total output.

Solution

(a) The demand functions for the intermediate goods are derived from the decisions of the final

producer. Profits for the final producer are therefore

Πt = Pt
yt(1)

φyt(2)
1−φ

φφ(1− φ)1−φ
− Pt(1)yt(1)− Pt(2)yt(2).

The first-order conditions for maximizing profits are

∂Πt
∂yt(1)

= Ptφ
yt

yt(1)
− Pt(1) = 0

∂Πt
∂yt(2)

= Pt(1− φ)
yt

yt(2)
− Pt(2) = 0.

Hence the demands for the inputs are

yt(1) = φ
Pt

Pt(1)
yt

yt(2) = (1− φ)
Pt

Pt(2)
yt

and

Pt = Pt(1)
φPt(2)

1−φ.

(b) The supply of intermediate goods is obtained from maximizing the profits of the interme-

diate goods firms taking the demand for their outputs as derived above. For the first intermediate

good producer profits can be written as

Πt(1) = φPtyt −Wtnt(1)

= φPtA1tnt(1)
α1 −Wtnt(1).
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Maximising Πt(1) with respect to nt(1), taking Pt and yt as given, yields

nt(1) = φ
Pt
Wt

yt

yt(1) = A1t[φ
Pt
Wt

yt]
α

Pt(1) = A
− 1
α

1t yt(1)
1−α
α Wt.

Similarly for good two

nt(2) = (1− φ)
Pt
Wt

yt

yt(2) = A2t[(1− φ)
Pt
Wt

yt]
α

Pt(2) = A
− 1
α

1t yt(2)
1−α
α Wt.

(c) Total output is derived from the outputs of the intermediate goods as

yt(1) = A1tnt(1)
α = φ

Pt
Pt(1)

yt

yt(2) = A2tnt(2)
α = (1− φ)

Pt
Pt(2)

yt.

Total employment is

nt = nt(1) + nt(2)

=

µ
φPtyt

A1tPt(1)

¶ 1
α

+

µ
(1− φ)Ptyt
A2tPt(2)

¶ 1
α

.

This gives a relation between the output of the final good and aggregate employment which can

be written as

yt = vtn
α
t

vt =

"µ
φ

A1tPt(1)

¶ 1
α

+

µ
1− φ

A2tPt(2)

¶ 1
α

#−α
(Ptyt)

−1.

If vt < 1 then there is an efficiency loss in the use of labor in producing the final output as

compared with intermediate outputs.
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9.4. Consider pricing with intermediate inputs where the demand for an intermediate firm’s

output is

yt(i) =

µ
Pt(i)

Pt

¶−φ
yt

its profit is

Πt(i) = Pt(i)yt(i)− Ct(i)

and its total cost is

Ct(i) =
φ

1− φ
ln[Pt(i)yt(i)].

(a) Find the optimal price Pt(i)∗ if the firm maximizes profits period by period while taking

yt and Pt as given.

(b) If instead the firm chooses a price which it plans to keep constant for all future periods

and hence maximizes Σ∞s=0(1 + r)−sΠt+s(i), derive the resulting optimal price Pt(i)#.

(c) What is this price if expressed in terms of Pt(i)∗?

(d) Hence comment on the effect on today’s price of anticipated future shocks to demand and

costs.

Solution

(a) The profit function is

Πt(i) = Pt(i)

µ
Pt(i)

Pt

¶−φ
yt −

φ

1− φ
ln[Pt(i)

µ
Pt(i)

Pt

¶−φ
yt]

The first-order condition for maximizing profits is

∂Πt(i)

∂Pt(i)
= (1− φ)

µ
Pt(i)

Pt

¶−φ
yt − φ

1

Pt(i)
= 0

Hence the optimal price is

P ∗t (i) =

µ
φ

1− φ
P−φt y−1t

¶ 1
1−φ

.
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(b) Maximizing Vt, the present value of profits, and keeping Pt(i), the prices of intermediate

goods, constant for all future periods, implies that

Vt = Σ∞s=0(1 + r)−sΠt+s(i)

= Σ∞s=0(1 + r)−s[Pt(i)

µ
Pt(i)

Pt+s

¶−φ
yt −

φ

1− φ
ln[Pt(i)

µ
Pt(i)

Pt+s

¶−φ
yt+s].

The first-order condition is

∂Vt
∂Pt(i)

= Σ∞s=0(1 + r)−s[(1− φ)

µ
Pt(i)

Pt+s

¶−φ
yt+s − φ

1

Pt(i)
] = 0.

Hence, the optimal price is

P#t (i) =

µ
φ

1− φ

¶ 1
1−φ

∙
1

r
Σ∞s=0(1 + r)−(s+1)Pt+s

φyt+s

¸− 1
1−φ

.

(c) Expressed in terms of P ∗t (i) we obtain

P#t (i) =

∙
1

r
Σ∞s=0(1 + r)−(s+1)P ∗t+s(i)

−(1−φ)
¸− 1

1−φ

.

(d) It follows that anticipated future shocks to demand and costs will affect future prices

P ∗t+s(i) (s > 0) and hence the current price P
#
t (i).

9.5. Consider an economy with two sectors i = 1, 2. Each sector sets its price for two periods

but does so in alternate periods. The general price level in the economy is the average of sector

prices: pt =
1
2(p1t + p2t), hence pt =

1
2(p

#
it + p#i+1,t−1). In the period the price is reset it is

determined by the average of the current and the expected future optimal price: p#it =
1
2(p
∗
it +

Etp
∗
i,t+1), i = 1, 2. The optimal price is assumed to be determined by p

∗
it− pt = φ(wt− pt), where

wt is the wage rate.

(a) Derive the general price level if wages are generated by ∆wt = et, where et is a zero mean

i.i.d. process. Show that pt can be given a forward-looking, a backward-looking and a univariate

representation.

137



(b) If the price level in steady state is p, how does the price level in period t respond to an

unanticipated shock in wages in period t?

(c) How does the price level deviate from p in period t in response to an anticipated wage

shock in period t+ 1?

Solution

(a) It follows that

p#it =
1

2
[(1− φ)(pt +Etpt+1) + φ(wt +Etwt+1)]

p#i+1,t−1 =
1

2
[(1− φ)(pt−1 + Et−1pt) + φ(wt−1 +Et−1wt)]

hence

pt =
1

4
[(1− φ)(pt−1 +Et−1pt + pt +Etpt+1) + φ(wt−1 +Et−1wt + wt +Etwt+1)] .

Let εt = pt −Et−1pt and et = wt −Et−1wt then

pt =
1

4
[(1− φ)(pt−1 + pt − εt + pt +Etpt+1) + φ(wt−1 + wt − et + wt + Etwt+1)] .

Or, introducing the lag operator Lxt = xt−1 and L−1 = Etxt+1,

[1− 1
2
(1− φ)− 1

4
(1− φ)(L+ L−1)]pt = −

1

4
(1− φ)εt + [

1

2
φ+

1

4
φ(L+ L−1)]wt −

1

4
φet.

If 1 > φ > 1
3 , then

1− 1
2
(1− φ)− 1

4
(1− φ)(L+ L−1) = −1

4
(1− φ)(L− λ1)(L− λ2)L

−1,

where

(L− λ1)(L− λ2)|L=1 = −
[1− 1

2(1− φ)− 1
4(1− φ)(L+ L−1)]L

1
4(1− φ)

|L=1 = −
φ

1
4(1− φ)

< 0.

Hence we have a unique saddlepath solution. If we let λ1 > 1 and λ2 < 1 then

1

4
(1− φ)λ1(1− λ−11 L)(1− λ2L

−1)pt = −
1

4
(1− φ)εt + [

1

2
φ+

1

4
φ(L+ L−1)]wt −

1

4
φet,
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or

pt =
1

λ1
pt−1 −

1

λ1
εt −

φ

λ1(1− φ)
[wt−1 − wt + et + (2 + λ2 + λ−12 )Σ

∞
s=0λ

s
2Etwt+s].

Thus, in general, pt is forward-looking.

pt can, however, be given a backward-looking representation using the fact that ∆wt = et.

This implies that Etwt+s = wt and therefore

pt =
1

λ1
pt−1 −

1

λ1
εt −

φ(2 + λ2 + λ−12 )

λ1(1− φ)(1− λ2)
wt.

It follows that

εt = pt −Et−1pt

= − 1
λ1

εt −
φ(2 + λ2 + λ−12 )

λ1(1− φ)(1− λ2)
et

= − φ(2 + λ2 + λ−12 )

(1 + λ1)(1− φ)(1− λ2)
et.

Hence the price level is generated by the process

pt =
1

λ1
pt−1 −

φ(2 + λ2 + λ−12 )

λ1(1− φ)(1− λ2)
[wt +

λ1
1 + λ1

et].

pt can also be given a univariate representation. As ∆wt = et, pt can be re-written as the

ARIMA(1,1,1) process

∆pt =
1

λ1
∆pt−1 −

φ(2 + λ2 + λ−12 )

λ1(1− φ)(1− λ2)
[et +

λ1
1 + λ1

∆et]

(b) From wt = wt−1 + et, an unanticipated shock et in period t causes the price in period t to

be

pt = p− φ(2 + λ2 + λ−12 )

λ1(1− φ)(1− λ2)
(1 +

λ1
1 + λ1

)et.

The last term gives the required effect.
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(c) From wt+1 = wt + et+1, where et+1 is known in period t,

pt =
1

λ1
pt−1 −

1

λ1
εt −

φ

λ1(1− φ)
[wt−1 − wt + et + (2 + λ2 + λ−12 )Σ

∞
s=0λ

s
2Etwt+s]

=
1

λ1
pt−1 −

φ(2 + λ2 + λ−12 )

λ1(1− φ)(1− λ2)
[wt +

λ1
1 + λ1

et + λ2et+1]

= p− φ(2 + λ2 + λ−12 )λ2
λ1(1− φ)

et+1

Again the last term gives the required effect.
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Chapter 10

10.1. (a) Suppose that a consumer’s initial wealth is given by W0, and the consumer has the

option of investing in a risky asset which has a rate of return r or a risk-free asset which has a sure

rate of return f . If the consumer maximizes the expected value of a strictly increasing, concave

utility function U(W ) by choosing to hold the risky versus the risk-free asset, and if the variance

of the return on the risky asset is V (r), find an expression for the risk premium ρ that makes the

consumer indifferent between holding the risky and the risk-free asset.

(b) Explain how absolute risk aversion differs from relative risk aversion.

(c) Suppose that the consumer’s utility function is the hyperbolic absolute risk aversion

(HARA) function

U(W ) =
1− σ

σ

∙
αW

1− σ
+ β

¸σ
, α > 0, β > 0, ; 0 < σ < 1.

Discuss how the magnitude of the risk premium varies as a function of wealth and the para-

meters α, β, and σ.

Solution

(a) If the investor holds the risk-free asset then

EU(W ) = U [Wo(1 + f)].

If the investor holds the risky asset then for the investor to be indifferent between holding the

risky and risk-free asset requires the risk premium ρ to satisfy

EU [W ] = EU [W0(1 + r)] = U [Wo(1 + f)].

Expanding EU [W0(1 + r)] about r = f + ρ we obtain

E[U(W )] ' U [W0(1 + f + ρ)] +
1

2
W 2
0E(r − f − ρ)2U

00
.

Expanding U [W0(1 + f + ρ)] about ρ = 0 we obtain

U [W0(1 + f + ρ)] ' U [W0(1 + f)] +W0ρU
0.
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Noting that E(r − f − ρ)2 ' V (r),

E[U(W )] ' U [Wo(1 + f)] +W0ρU
0 +W 2

0

V (r)

2
U

00
.

Hence the risk premium is approximately

ρ ' −V (r)
2

W0U
00

U 0
.

where −W0U
00

U 0 is the coefficient of relative risk aversion.

(b) The coefficient of absolute risk aversion is defined by −U
00

U 0 whereas the coefficient of relative

risk aversion (CRRA) is −WU
00

U0 if utility is a function of wealth - or − cU
00

U 0 if utility is a function

of consumption. In general, whereas the CRRA is independent of wealth the CARA is not.

(c) For the HARA utility function

U 0 =
U

W
1−σ +

β
α

U 00 = − U

[ W1−σ +
β
α ]
2

CRRA = −W0U
00

U 0
= [

W0

1− σ
+

β

α
]−1.

This shows that the CRRA depends on wealth. It follows that the risk premium is

ρ ' −V (r)
2

W0U
00

U 0

=
V (r)

2

W0

W0

1−σ +
β
α

.

The risk premium increases the larger is W0 and α and the smaller are β and σ. The HARA

utility function therefore implies that the risk premium depends on wealth. Power utility, which

has a constant CRRA, does not depend on wealth.

10.2. Consider there exists a representative risk-averse investor who derives utility from current

and future consumption according to

U = Σθs=0βsEtU(ct+s),
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where 0 < β < 1 is the consumer’s subjective discount factor, and the single-period utility function

has the form

U(ct) =
c1−σt − 1
1− σ

, σ ≥ 0.

The investor receives a random exogenous income of yt and can save by purchasing shares in a

stock or by holding a risk-free one-period bond with a face-value of unity. The ex-dividend price

of the stock is given by PS
t in period t. The stock pays a random stream of dividends Dt+s per

share held at the end of the previous period. The bond sells for PB
t in period t.

(a) Find an expression for the bond price that must hold at the investor’s optimum.

(b) Find an expression for the stock price that must hold at the investor’s optimum. Interpret

this expression.

(c) Derive an expression for the risk premium on the stock that must hold at the investor’s

optimum. Interpret this expression.

Solution

(a) The problem can be re-written as involving the recursion

Ut = U(ct) + βEtUt+1

and solved using stochastic dynamic programming. Let the number of shares held during period t

be NS
t and the number of bonds be N

B
t . At the start of each period the investor can sell the stocks

held over the previous period as well as receiving the dividends on these shares. The investor’s

nominal budget constraint can therefore be expressed as

PS
t N

S
t + PB

t NB
t + Ptct = Ptyt + (P

S
t +Dt)N

S
t−1 +NB

t−1

where Pt is the general price level.

Maximizing Ut with respect to {ct+s, NS
t+s, N

B
t+s} subject to the budget constraint gives the

following first-order condition

∂Ut
∂ct

=
∂Ut
∂ct

+ βEt(
∂Ut+1
∂ct

) = 0
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where

∂Ut+1
∂ct

=
∂Ut+1
∂ct+1

∂ct+1
∂ct

=
∂Ut+1
∂ct+1

∂ct+1
∂ct

= −c−σt+1
Pt

PB
t Pt+1

and ∂ct+1
∂ct

is obtained from the budget constraints for periods t and t+ 1 as

∂ct+1
∂ct

=
∂NB

t

∂ct

∂ct+1
∂NB

t

= − Pt
PB
t

1

Pt+1
.

Hence,

∂Ut
∂ct

= c−σt − βEt[c
−σ
t+1

Pt
PB
t Pt+1

] = 0.

The consumption Euler equation is therefore

Et

∙
β(

ct+1
ct
)−σ

Pt
PB
t Pt+1

¸
= 1.

It follows that the bond price can be expressed as

PB
t = Et

∙
β(

ct+1
ct
)−σ

Pt
Pt+1

¸
.

The expression β( ct+1ct
)−σ Pt

Pt+1
is known as the pricing kernel.

(b) Alternatively we may obtain ∂ct+1
∂ct

from

∂ct+1
∂ct

=
∂NS

t

∂ct

∂ct+1
∂NS

t

= − Pt
PS
t

PS
t+1 +Dt+1

Pt+1
,

It then follows that the Euler equation can be written as

Et

∙
β(

ct+1
ct
)−σ

Pt(P
S
t+1 +Dt+1)

PS
t Pt+1

¸
= 1.

To evaluate this we re-write it as

Et

∙
β(

ct+1
ct
)−σ

Pt
Pt+1

·
PS
t+1 +Dt+1

PS
t

¸
= 1.
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As

Et[Xt+1Yt+1] = Et[Xt+1]Et[Yt+1] + Covt(Xt+1, Yt+1)

we obtain

1 = Et

∙
β(

ct+1
ct
)−σ

Pt
Pt+1

¸
Et

∙
PS
t+1 +Dt+1

PS
t

¸
−Covt[β(

ct+1
ct
)−σ

Pt
Pt+1

,
PS
t+1 +Dt+1

PS
t

].

From the previous expression for PB
t , it follows that

Et

∙
PS
t+1 +Dt+1

PS
t

¸
=
1− Covt[β(

ct+1
ct
)−σ Pt

Pt+1
,
PS
t+1+Dt+1

PS
t

]

PB
t

.

Denoting the right-hand side by zt, the stock price therefore evolves according to the forward-

looking equation

PS
t =

1

zt
Et(P

S
t+1 +Dt+1)

= EtΣi=1
Dt+i

Πi−1j=0zt+j
.

Thus the stock price depends on the expected discounted value of future dividends.

(c) We may interpret
PS
t+1+Dt+1

PS
t

= 1 + RS
t+1, where R

S
t+1 is the nominal equity return, and

1
PB
t
= 1+RB

t , where R
B
t is the risk-free return on bonds. Hence we can re-write the price equation

for stocks as

Et

∙
PS
t+1 +Dt+1

PS
t

¸
= Et(1 +RS

t+1)

= 1 +RB
t − (1 +RB

t )Covt[β(
ct+1
ct
)−σ

Pt
Pt+1

,
PS
t+1 +Dt+1

PS
t

].

This gives

E(RS
t+1 −RB

t ) = −(1 +RB
t )Covt[β(

ct+1
ct
)−σ

Pt
Pt+1

,
PS
t+1 +Dt+1

PS
t

]

where the right-hand side is the equity risk premium. It shows that risk arises due to conditional

(and time-varying) covariation between the rate of growth of consumption and the real return to

equity.
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10.3. If the pricing kernel isMt+1, the return on a risky asset is rt and that on a risk-free asset

is ft,

(a) state the asset-pricing equation for the risky asset and the associated risk premium.

(b) Express the risk premium as a function of the conditional variance of the risky asset and

give a regression interpretation of your result.

Solution

(a) As shown in Chapter 10 the asset-pricing equation is

Et [Mt+1(1 + rt+1)] = 1

and the risk premium is given by

Et(rt+1 − ft) = (1 + ft)Covt(Mt+1, rt+1).

(b) We can re-write the risk premium as

Et(rt+1 − ft) = (1 + ft)
Covt(Mt+1, rt+1)

Vt(rt+1)
· Vt(rt+1)

= (1 + ft)btVt(rt+1)

where

bt =
Covt(Mt+1, rt+1)

Vt(rt+1)
.

bt can be interpreted as the conditional regression coefficient of Mt+1 on rt+1. Vt(rt+1) can

be interpreted as the quantity of risk and (1 + ft)bt as the price of risk. Conditional terms like

these appear naturally in up-dating formulae such as in the Kalman filter, or in recursive or

rolling regressions. In general equilibrium Mt+1 is a function of consumption. bt can therefore be

interpreted as expressing risk in terms of consumption.

10.4. (a) What is the significance of an asset having the same pay-off in all states of the world?
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(b) Consider a situation involving three assets and two states. Suppose that one asset is a

risk-free bond with a return of 20%, a second asset has a price of 100 and pay-offs of 60 and 200

in the two states, and a third asset has pay-offs of 100 and 0 in the two states. If the probability

of the first state occurring is 0.4.

(i) What types of assets might this description fit?

(ii) Find the prices of the implied contingent claims in the two states.

(iii) Find the price of the third asset.

(iv) What is the risk premium associated with the second asset?

Solution

(a) An asset that has the same pay-off in all states of the world is a risk-free asset.

(b) (i) This description fits the situation where we have the following three types of asset:

B(t) = riskless borrowing and lending

S(t) = a stock price

C(t) = the value of a call option with strike price K

where a call option gives the owner the right to purchase the underlying asset at the strike price

(exercise price) K. Suppose that there are possible states of nature in period t+1. If we let X(t)

denote the vector of pay-offs on the different assets in the future states and P (t) denote a vector

of asset prices

P (t) =

⎡⎢⎢⎢⎢⎢⎢⎣
B(t)

S(t)

C(t)

⎤⎥⎥⎥⎥⎥⎥⎦ .
If f denotes the riskless rate of interest then the pay-off matrix is

X(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
(1 + f)B(t) (1 + f)B(t)

S1(t+ 1) S2(t+ 1)

C1(t+ 1) C2(t+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦ .
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where we can let B(t) = 1 as a normalization. It then follows that

P (t) = X(t)q(t)

where q(t) is a vector of state contingent claims prices.

In the present case we have three assets and two states giving⎡⎢⎢⎢⎢⎢⎢⎣
1

100

C

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
1.2 1.2

60 200

0 100

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣ q1

q2

⎤⎥⎥⎦ ,

where in effect K = 100.

(ii) We can determine the two state prices q1 and q2 from the first two equations to obtain

q1 = 0.060 and q2 = 0.357.

(iii) We can then use the third equation to determine the value of the third asset (the option)

as C(t) = 3.57.

(iv) The risk premium ρS(t) associated with the second asset is

ρS(t) =
E[S(t+ 1)]

S(t)
− (1 + f)

where, denoting the probability of state s occurring by π(s),

E[S(t+ 1)] = π(1)S1(t+ 1) + π(2)S2(t+ 1)

= 0.4× 60 + 0.6× 200 = 144.

As the risk-free rate is 0.2 and S(t) = 100, the risk premium is

ρS(t) =
144

100
− 1.2

= 0.24.

A risk premium for the call option can be calculated in the same way and is 0.6×1003.57 − 1.2 = 15.6.
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10.5. Consider the following two-period problem for a household in which there is one state of

the world in the first period and two states in the second period. Income in the first period is 6;

in the second period it is 5 in state one which occurs with probability 0.2, and is 10 in state two.

There is a risk-free bond with a rate of return equal to 0.2. If instantaneous utility is ln ct and

the rate of time discount is 0.2 find

(a) the levels of consumption in each state,

(b) the state prices,

(c) the stochastic discount factors,

(d) the risk-free "rate of return" (i.e. rate of change) to income in period two,

(e) the "risk premium" for income in period two.

Solution

(a) The problem is to maximize

V = U (c) + β{π(1)U [c(1)] + π(2)U [c(2)]}

subject to the intertempral budget constraint

c+ q(1)c(1) + q(2)c(2) = y + q(1)y(1) + q(2)y(2)

where q(1) and q(2) are the prices of contingent claims in the two states in the second period.

The Lagrangian is

L = U(c) + β{π(1)U [c(1)] + π(2)U [c(2)]}

+λ [y + q(1)y(1) + q(2)y(2)y − c− q(1)c(1)− q(2)c(2)] .

The first-order conditions are given by

∂L
∂c

= U 0(c)− λ = 0,

∂L
∂c(s)

= βπ(s)U 0[c(s)]− λq(s) = 0, s = 1, 2.
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Thus

q(s) = βπ(s)
U 0[c(s)]

U 0(c)
, s = 1, 2.

Hence any income stream x(s) can be priced using

p = Σsq(s)x(s) =
βΣsπ(s)U

0[c(s)]x(s)

U 0(c)
.

In particular, we can price the income stream y(s) by setting x(s) = y(s). And if there is a

risk-free asset then its price given a unit pay-off is

Σsq(s) = Σsπ(s)
βU 0[c(s)]

U 0(c)
=

1

1 + f

where f is the risk-free rate of return.

Using the given values we obtain

q(1) = βπ(1)
c

c(1)
=

1

1.2
0.2

c

c(1)

q(2) = βπ(2)
c

c(2)
=

1

1.2
0.8

c

c(2)
.

We now evaluate the budget constraint noting that

c+ q(1)c(1) + q(2)c(2) = c+
0.2

1.2
c+

0.8

1.2
c =

2.2

1.2
c

and that

y + q(1)y(1) + q(2)y(2) = 2y = 12.

Therefore

c =
1.2× 12
2.2

= 6.55.

From the price of income

1

1.2
0.2

c

c(1)
5 +

1

1.2
0.8

c

c(2)
10 = 6

or

5c

c(1)
+
40c

c(2)
= 36
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From the risk-free bond

1

1.2
0.2

c

c(1)
+
1

1.2
0.8

c

c(2)
=

1

1.2

or

c

c(1)
+

4c

c(2)
= 5.

Solving for c(1) and c(2) from the two equations gives c(1) = 14
5 c = 18.3 and c(2) = 20

11c = 11.9.

(b) The contingent state prices are q(1) = 0.2
1.2

c
c(1) = 0.06 and q(2) = 0.8

1.2
c

c(2) = 0.37.

(c) The stochastic discount factors are

m(s) =
q(s)

π(s)
=

βU 0[c(s)]

U 0(c)
.

Thus, m(1) = 0.30 and m(2) = 0.46.

(d) If the rate of return to income is r(s) then its expectation satisfies

E[1 + r(s)] =
E[y(s)]

y
=

π(1)y(1) + π(2)y(2)

y

=
0.2× 5 + 0.8× 10

6
= 1.5.

Hence E[r(s)] = 0.5.

(e) The risk premium for income ρ is therefore

ρ = E[r(s)− f ] = 0.5− 0.2 = 0.3.
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Chapter 11

11.1. An investor with the utility function U(ct) =
c‘−σt

1−σ who maximizes EtΣ
∞
s=0β

sU(ct+s) can

either invest in equity with a price of PS
t and a dividend of Dt or a risk-free one-period bond with

nominal return ft. Derive

(a) the optimal consumption plan, and

(b) the equity premium.

(c) Discuss the effect on the price of equity in period t of a loosening of monetary policy as

implemented by an increase in the nominal risk-free rate ft.

Solution

(a) We start with the Euler equation (see Chapter 10) which is also the general equilibrium

asset pricing equation when utility is time separable:

Et

∙
βU 0t+1(1 + rt+1)

U 0t

¸
= 1

where rt+1 is a real rate of return and β = 1
1+θ . In this exercise U

0
t = ct

−σ and the real rate of

return depends on the asset. For equity the real return satisfies

1 + rSt+1 =
PS
t+1 +Dt+1

PS
t

Pt
Pt+1

= (1 +RS
t+1)

Pt
Pt+1

,

where RS
t+1 is the nominal return on equity. For bonds

1 + rBt+1 = (1 + ft)
Pt
Pt+1

=
1

PB
t

Pt
Pt+1

where Pt is the general price level and PB
t is the price of a one-period bond. There is, therefore,

no real risk-free asset in this problem.

It follows that

Et

"
β

µ
ct
ct+1

¶−σ
Pt
Pt+1

· (1 + ft)

#
= 1.

As

Et

"µ
ct
ct+1

¶−σ
Pt
Pt+1

#
= Et

"µ
ct
ct+1

¶−σ#
Et

∙
Pt
Pt+1

¸
+ Covt

"µ
ct
ct+1

¶−σ
,
Pt
Pt+1

#
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we obtain the optimal consumption plan

Et

"µ
ct
ct+1

¶−σ#
=

1+θ
1+ft

− Covt

∙³
ct
ct+1

´−σ
, Pt
Pt+1

¸
Et

h
Pt
Pt+1

i
= [Et(

1

1 + πt+1
)]−1

(
1 + θ

1 + ft
− Covt

"µ
ct
ct+1

¶−σ
,

1

1 + πt+1

#)

where πt+1 =
∆Pt+1
Pt

is the inflation rate.

(b) The Euler equation can also be expressed in terms of the return to equity because

1 = Et

"
β

µ
ct
ct+1

¶−σ
Pt
Pt+1

· (1 +RS
t+1)

#

= Et

"
β

µ
ct
ct+1

¶−σ
Pt
Pt+1

#
Et

£
1 +RS

t+1

¤
+ Covt

"
β

µ
ct
ct+1

¶−σ
Pt
Pt+1

, (1 +RS
t+1)

#
.

Solving from the nominal return to equity

Et

£
1 +RS

t+1

¤
=

1− Covt

∙
β
³

ct
ct+1

´−σ
Pt
Pt+1

, RS
t+1

¸
Et

∙
β
³

ct
ct+1

´−σ
Pt
Pt+1

¸ .

From part (a)

1 + ft =
1

Et

∙
β
³

ct
ct+1

´−σ
Pt
Pt+1

¸ .
Hence, subtracting, the expected excess return (the equity premium) is

Et

£
RS
t+1 − ft

¤
= β(1 + ft)Covt

"µ
ct
ct+1

¶−σ
Pt
Pt+1

, RS
t+1

#
.

(c) Assuming that a loosening of monetary policy has no significant effect on consumption

growth we obtain

1 + ft =
1

Et

∙
β
³

ct
ct+1

´−σ
Pt
Pt+1

¸
' 1

Et

h
Pt
Pt+1

i .
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Hence inflation is expected to increase. We can approximate the equity pricing equation as

Et

£
RS
t+1 − ft

¤
' β(1 + ft)Covt

∙
Pt
Pt+1

, RS
t+1

¸
.

The nominal return to equity is therefore expected to increase even though this would imply a fall

in Covt

h
Pt
Pt+1

, RS
t+1

i
. We note that a decrease is not possible because Covt

h
Pt
Pt+1

, RS
t+1

i
would

then be positive.

To find the effect on the price of equity note from its return that

1 +RS
t+1 =

PS
t+1 +Dt+1

PS
t

=
PS
t+1

PS
t

(1 +
Dt+1

PS
t+1

).

Since inflation has increased we may expect dividends - a nominal variable - to increase too. If

the dividend yield is unaffected then this would imply that PS
t+1 must increase, and by more than

PS
t . There would then be a capital gain to equity.

11.2. (a) A household with the utility function U(ct) = ln ct, which maximizesEtΣ
∞
s=0β

sU(ct+s),

can either invest in a one-period domestic risk-free bond with nominal return Rt, or a one-period

foreign currency bond with nominal return (in foreign currency) of R∗t . If the nominal exchange

rate (the domestic price of foreign exchange) is St derive

(i) the optimal consumption plan, and

(ii) the foreign exchange risk premium.

(b) Suppose that foreign households have an identical utility function but a different discount

factor β∗, what is their consumption plan and their risk premium?

(c) Is the market complete? If not,

(i) what would make it complete?

(ii) How would this affect the two risk premia?

Solution
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(a) The solution takes a similar form to that in the previous exercise but with the return to

the foreign bond replacing the return to equity. Thus,

(i) the optimal consumption plan is

Et

∙
ct+1
ct

¸
=

1+θ
1+Rt

− Covt

h
ct+1
ct

, Pt
Pt+1

i
Et

h
Pt
Pt+1

i
= [Et(

1

1 + πt+1
)]−1

½
1 + θ

1 +Rt
− Covt

∙
ct+1
ct

,
1

1 + πt+1

¸¾

where πt+1 =
∆Pt+1
Pt

is the inflation rate.

(ii) The nominal return in domestic currency terms to the foreign bond is (1+R∗t )
St+1
St
, hence

Et

∙
(1 +R∗t )

St+1
St

¸
=
1− Covt

h
β ct+1

ct
Pt
Pt+1

, (1 +R∗t )
St+1
St

i
Et

h
β ct+1

ct
Pt
Pt+1

i .

And the foreign exchange risk premium is

Et

∙
(1 +R∗t )

St+1
St
− (1 +Rt)

¸
= β(1 +Rt)Covt

∙
ct+1
ct

Pt
Pt+1

, (1 +R∗t )
St+1
St

¸
.

(b) For the foreign investor the rate of return on foreign bonds expressed in its own currency

is (1 +Rt)
St
St+1

. Hence the consumption plan is

Et

∙
c∗t+1
c∗t

¸
=

1+θ∗

1+R∗t
− Covt

h
c∗t+1
c∗t

,
P∗t
P∗t+1

i
Et

h
P∗t
P∗t+1

i
= [Et(

1

1 + π∗t+1
)]−1

½
1 + θ∗

1 +R∗t
− Covt

∙
c∗t+1
c∗t

,
1

1 + π∗t+1

¸¾

and the foreign risk premium is

Et

∙
(1 +Rt)

St
St+1

− (1 +R∗t )

¸
= β∗(1 +R∗t )Covt

∙
c∗t+1
c∗t

P ∗t
P ∗t+1

, (1 +Rt)
St
St+1

¸
,

where c∗t is foreign consumption and P ∗t is the foreign price level.

(c) The market is not complete as the pricing kernels for the two countries are different due to

β 6= β∗.
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(i) It would be complete if β = β∗.

(ii) With complete markets consumption would be the same in each country and the exchange

rate will be the ratio of the price levels so that St = Pt
P∗t
and PPP will hold. Hence

βCovt

∙
ct+1
ct

P ∗t
P ∗t+1

, (1 +Rt)
St
St+1

¸
= Et

∙
β
ct+1
ct

P ∗t
P ∗t+1

(1 +Rt)
St
St+1

¸
−Et

∙
β
ct+1
ct

P ∗t
P ∗t+1

¸
Et

∙
(1 +Rt)

St
St+1

¸
= (1 +Rt)Et

∙
β
ct+1
ct

Pt
Pt+1

¸
− (1 +Rt)Et

∙
β
ct+1
ct

Pt
Pt+1

St+1
St

¸
Et

∙
St
St+1

¸

= 1− (1 +Rt)

⎧⎪⎪⎨⎪⎪⎩
Et

h
β ct+1

ct
Pt
Pt+1

i
Et

h
St+1
St

i
+Covt

h
β ct+1

ct
Pt
Pt+1

, St+1St

i
⎫⎪⎪⎬⎪⎪⎭Et

∙
St
St+1

¸

= 1−
½
Et

∙
St+1
St

¸
+
1 +Rt

1 +R∗t
Covt

∙
β
ct+1
ct

Pt
Pt+1

, (1 +R∗t )
St+1
St

¸¾
Et

∙
St
St+1

¸
= −Et

∙
1

1 +R∗t

St+1
St

¸
Et

∙
(1 +R∗t )

St+1
St
− (1 +Rt)

¸
where we have assumed that Et

h
St+1
St

i
Et

h
St
St+1

i
= 1. As established by Siegel’s inequality, this is

not stricly correct as, to second-order aproximation, E( 1x) '
1

E(x) [1+
V (x)
[E(x)]2 ] =

1
E(x)

E(x2)
[E(x)]2 > 1

E(x) .

The foreign exchange risk premium for the foreign country is then

Et

∙
(1 +Rt)

St
St+1

− (1 +R∗t )

¸
= β(1 +R∗t )Covt

∙
ct+1
ct

P ∗t
P ∗t+1

, (1 +Rt)
St
St+1

¸
= −Et

∙
(1 +R∗t )

St+1
St
− (1 +Rt)

¸
,

i.e. equal to the foreign exchange risk premium for the domestic country.

11.3. Let St denote the current price in dollars of one unit of foreign currency; Ft,T is the

delivery price agreed to in a forward contract; r is the domestic interest rate with continuous

compounding; r∗ is the foreign interest rate with continuous compounding.

(a) Consider the following pay-offs:

(i) investing in a domestic bond

(ii) investing a unit of domestic currency in a foreign bond and buying a forward contract

to convert the proceeds.

Find the value of the forward exchange rate Ft,T .
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(b) Suppose that the foreign interest rate exceeds the domestic interest rate at date t so that

r∗ > r. What is the relation between the forward and spot exchange rates?

Solution

(a) (i) Investing in a domestic bond gives the pay-off er(T−t)

(ii) A unit of domestic currency gives S−1t units of foreign currency and a pay-off in foreign

currency of S−1t er
∗(T−t). The pay-off in terms of domestic currency is Ft,T e

r∗(T−t)

St
. No-arbitrage

implies that the pay-offs are the same, hence

er(T−t) =
Ft,T e

r∗(T−t)

St

The value of the forward contract is therefore

Ft,T = Ste
(r−r∗)(T−t)

(b) If r∗ > r then Ft,T < St.

11.4. (a) What is the price of a forward contract on a dividend-paying stock with stock price

St?

(b) A one-year long forward contract on a non-dividend-paying stock is entered into when the

stock price is $40 and the risk-free interest rate is 10% per annum with continuous compounding.

What is the forward price?

(c) Six months later, the price of the stock is $45 and the risk-free interest rate is still 10%.

What is the forward price?

Solution

(a) Assuming that dividends are paid continuously and the dividend yield is a constant q, at

time T the pay-off to investing in St in a stock is ST eq(T−t). Hence, a portfolio consisting of a
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long position in the forward contract involves paying Ft,T for the stock and selling it for ST . This

yields a profit at time T of

π1(T ) = ST − Ft,T .

A portfolio consisting of a long position in the stock and a short position in a risk-free asset

involves borrowing e−q(T−t)St. At the rate of interest r this costs e(r−q)(T−t)St at date T . Selling

the stock for ST then yields the profit

π2(T ) = ST − e(r−q)(T−t)St.

No-arbitrage implies that expected profits for the two portfolios are the same, hence

Et(ST )− Ft,T = Et(ST )− e(r−q)(T−t)St.

The forward price for the stock is therefore

Ft,T = e(r−q)(T−t)St.

(b) The forward price of a non-dividend paying stock is

Ft,T = er(T−t)St.

If St = $40 and r = 0.1 then Ft,t+1 = $e
0.140 = $44.2.

(c) We now require Ft+ 1
2 ,t+1

= $e
0.1
2 ·

1
2 40 = $41.0.

11.5. Suppose that in an economy with one and two zero-coupon period bonds investors

maximize EtΣ
∞
s=0β

s ln ct+s. What is

(a) the risk premium in period t for the two-period bond, and

(b) its price in period t?

(c) What is the forward rate for the two-period bond?

(d) Hence, express the risk premium in terms of this forward rate.
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Solution

(a) From the answers to Exercises 11.1 and 11.2 the Euler equations for one and two period

bonds are

Et

∙
β
ct+1
ct

Pt
Pt+1

· (1 + st)

¸
= 1

Et

∙
β
ct+1
ct

Pt
Pt+1

· (1 + h2,t+1)

¸
= 1

where 1 + st =
1

P1,t
, the holding-period return on the two-period bond is given by

1 + h2,t+1 =
P1,t+1
P2,t

=
(1 +R1,t)

−(n−1)

(1 +R2,t)−n

Rn,t is the yield to maturity on an n-period zero-coupon bond and R1,t = st. Hence

0 = Et

∙
β
ct+1
ct

Pt
Pt+1

· (h2,t+1 − st)

¸
= Et

∙
β
ct+1
ct

Pt
Pt+1

¸
Et [h2,t+1 − st] + Covt

∙
β
ct+1
ct

Pt
Pt+1

, h2,t+1 − st

¸
.

It follows that the risk premium on the two-period bond is

Et [h2,t+1 − st] = −(1 + st)Covt

∙
β
ct+1
ct

Pt
Pt+1

, h2,t+1 − st

¸
.

(b) The expected excess return can be written as

Et [1 + h2,t+1 − (1 + st)] =
Et[P1,t+1]

P2,t
− (1 + st).

Hence the price of the two-period bond is

P2,t =
Et[P1,t+1]

(1 + st)
n
1− Covt

h
β ct+1

ct
Pt
Pt+1

, h2,t+1 − st

io ,
where Et[P1,t+1] = Et[

1
1+st+1

].

(c) The forward rate between periods t+ 1 and t+ 2 is obtained from

1 + ft,t+1 =
P1,t
P2,t

.
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(d) P2,t can be written in terms of the risk premium, which we denote by ρ2,t, as

P2,t =
Et[P1,t+1]

1 + st + ρ2,t
.

It follows that

1 + ft,t+1 =
P1,t
P2,t

=
P1,t(1 + st + ρ2,t)

Et[P1,t+1]
.

Hence, the risk premium can be written as

ρ2,t = (1 + ft,t+1)
Et[P1,t+1]

P1,t
− (1 + st)

= (1 + ft,t+1)Et(
1 + st
1 + st+1

)− (1 + st).

11.6. Consider a Vasicek model with two independent latent factors z1t and z2t. The price of

an n-period bond and the log discount factor may be written as

pn,t = −[An +B1nz1t +B2nz2t]

mt+1 = −[z1t + z2t + λ1e1,t+1 + λ2e2,t+1]

where the factors are generated by

zi,t+1 − μi = φi(zit − μi) + ei,t+1, i = 1, 2.

(a) Derive the no-arbitrage condition for an n-period bond and its risk premium. State any

additional assumptions made.

(b) Explain how the yield on an n-period bond and its risk premium can be expressed in terms

of the yields on one and two period bonds.

(c) Derive an expression for the n-period ahead forward rate.

(d) Comment on the implications of these results for the shape and behavior over time of the

yield curve.
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Solution

(a) The pricing equation for an n-period bond is

Pnt = Et[Mt+1Pn−1,t+1].

Assuming that Pn,t and Mt+1 have a joint log-normal distribution with pn,t = lnPn,t and mt+1 =

lnMt+1 gives

pnt = Et(mt+1 + pn−1,t+1) +
1

2
Vt(mt+1 + pn−1,t+1).

Hence, as P0,t = 1, and so po,t = 0,

p1,t = Etmt+1 +
1

2
Vt(mt+1).

The no-arbitrage condition is

Etpn−1,t+1 − pn.t + p1,t +
1

2
Vt(pn−1,t+1) = −Covt(mt+1, pn−1,t+1)

and the risk premium is −Covt(mt+1, pn−1,t+1).

Evaluating

Et[mt+1 + pn−1,t+1] = −[Σizit +An−1 +ΣiBi,n−1Etzi,t+1]

= −[Σizit +An−1 +ΣiBi,n−1[μi(1− φi) + φizi,t]

where Σi = Σ2i=1 and

Vt[mt+1 + pn−1,t+1] = Vt[Σi(λiei,t+1 +Bi,n−1ei,t+1)]

= Σi(λi +Bi,n−1)
2σ2i ,

the log pricing equation becomes

−[An +ΣiBi,nzi,t] = −[An−1 +ΣiBi,n−1μi(1− φi)]− Σi[1 + φiBi,n−1 −
1

2
(λi +Bi,n−1)

2σ2i )]zi,t.

Equating terms on the left-hand and right-hand sides gives the recursive formulae

An = An−1 +ΣiBi,n−1μi(1− φi)
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Bi,n = 1 + φiBi,n−1 −
1

2
(λi +Bi,n−1)

2σ2i

Using p0,t = 0 we obtain A0 = 0, Bi,0 = 0, Bi,1 = 1− 1
2λ

2
iσ

2
i and A1 = 0. Hence

st = −p1,t = A1 +ΣiBi,1zi,t

= Σi(1−
1

2
λ2iσ

2
i )zi,t.

The no-arbitrage condition is therefore

Etpn−1,t+1 − pnt + p1,t = Σi[−
1

2
B2
i,n−1σ

2
i + λiBi,n−1σ

2
i ].

The first term is the Jensen effect and the second is the risk premium. Thus

risk premium = − Covt(mt+1, pn−1,t+1) = ΣiλiBi,n−1σ
2
i .

(b) The yield on an n-period bond is

Rn,t = −
1

n
pn,t =

1

n
[An +ΣiBi,nzi,t]

Hence

st = −p1,t = A1 +ΣiBi,1zi,t

R2,t = −1
2
p2,t =

1

2
[A2 +ΣiBi,2zi,t]

are two equations in two unknowns z1,t and z2,t, where An and Bi,n are functions of the parameters.

Thus, from the recursions

A2 = A1 +ΣiBi,1μi(1− φi)

= Σi(1−
1

2
λ2iσ

2
i )μi(1− φi)

and

Bi,2 = 1 + φiBi,1 −
1

2
(λi +Bi,1)

2σ2i

= 1 + φi(1−
1

2
λ2iσ

2
i )−

1

2
(λi + 1−

1

2
λ2iσ

2
i )
2σ2i .

162



We can therefore solve for z1,t and z2,t as functions of the two yields st and R2,t - or any other

yield. Knowing z1,t and z2,t we now can the solve for Rn,t and the risk premium on an n-period

bond.

(c) The n-period ahead forward rate is

ft,t+n = pn−1,t − pn,t

= An −An−1 +Σi(Bi,n −Bi,n−1)zi,t

= ΣiBi,n−1μi(1− φi) +Σi[−(1− φi)Bi,n−1 −
1

2
(λi +Bi,n−1)

2σ2i ]zi,t.

This too can be expressed in terms of the yields st and R2,t - or any other yield.

(d) Broadly, the shape of a yield curve can be described in terms of its level and slope - or

curvature. The level largely reflects the effects of inflation and the real interest rate both of which

are captured in the short rate st. The slope largely reflects how inflation is expected to change

in the future - up or down - and the greater risk at longer maturity horizons. Curvature reflects

expected changes in the rate of inflation over time. We note that as, in effect, the first factor z1,t

is st, the model captures this aspect of the yield curve well. The second factor z2,t has to capture

all other features of the yield curve which, in general, it will be unable to do. In particular, it

will be unable to pick up any curvature in the yield curve. Further, the risk premium varies with

the time to maturity, but is independent of z1,t and z2,t and is fixed over time. This is a major

weakness of the model.

11.7 In their affine model of the term structure Ang and Piazzesi (2003) specify the pricing
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kernel Mt directly as follows:

Mt+1 = exp(−st)
ξt+1
ξt

st = δ0 + δ01zt

zt = μ+ φ0zt−1 +Σet+1

ξt+1
ξt

= exp(−1
2
λ0tλt − λ0tet+1)

λt = λ0 + λ1zt

pn,t = An +B0
nzt

(a) Derive the yield curve, and

(b) and the risk premium on a n-period yield.

Solution

(a) We start with the asset pricing equation

Pnt = Et[Mt+1Pn−1,t+1]

so that for Pn,t and Mt+1 jointly log-normal with pt = lnPt and mt+1 = lnMt+1 we have

pnt = Et(mt+1 + pn−1,t+1) +
1

2
Vt(mt+1 + pn−1,t+1).

As po,t = 0 and st = −p1,t,

−st = Et(mt+1) +
1

2
Vt(mt+1)

Given the set-up of the exercise, it follows that δ0 = −A1, δ1 = −B1,

Et(mt+1) = −st −
1

2
Vt(mt+1)

and, since Etet+1e
0
t+1 = I,

Vt(mt+1) =
1

2
λ0tλt.
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Hence,

mt+1 = −st +∆ ln ξt+1

= −st −
1

2
λ0tλt − λ0tet+1

= −δ0 − δ01zt −
1

2
λ0tλt − λ0tet+1.

Evaluating pnt we obtain

pnt = Et(mt+1 + pn−1,t+1) +
1

2
Vt(mt+1 + pn−1,t+1)

An +B0
nzt = −δ0 − δ01zt −

1

2
λ0tλt +An−1 +B0

n−1(μ+ φ0zt) +
1

2
λ0tλt +

1

2
B0
n−1ΣΣ

0Bn−1 + λ0tΣ
0Bn−1

= −δ0 − δ01zt +An−1 +B0
n−1(μ+ φ0zt) +

1

2
B0
n−1ΣΣ

0Bn−1 +B0
n−1Σ(λ0 + λ1zt)

where

An = −δ0 +An−1 +B0
n−1μ+

1

2
B0
n−1ΣΣ

0Bn−1 +B0
n−1Σλ0

Bn = −δ1 + φBn−1 +
1

2
B0
n−1ΣΣ

0Bn−1 +B0
n−1Σλ1.

We note that, as required, A1 = −δ0, B1 = −δ1.

(b) The risk (term) premium is therefore

risk premium = −Covt(mt+1, pn−1,t+1)

= −B0
n−1Σλt

= −B0
n−1Σ(λ0 + λzt)

This depends on the factors zt, which may be a mixture of observable and unobservable variables,

and the coefficients Bn−1 which depend on n, the time to maturity.
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Chapter 12

12.1. According to rational expectations models of the nominal exchange rate, such as the

Monetary Model, an increase in the domestic money supply is expected to cause an appreciation

in the exchange rate, but the exchange rate depreciates. Explain why the Monetary Model is

nonetheless correct.

Solution

The question is play on words. Nonetheless, it highlights an important feature of bi-lateral

exchange rates, namely, that they are asset prices and hence respond instantaneously to new

information. Both the spot rate and expected future exchange rates respond. As a result, the

expected change Et∆st+1 may, for example, increase but the spot rate may increase or decrease.

In the Monetary Model in Chapter 12 the exchange rate is determined from the uncovered

interest parity condition

Rt = R∗t +Et∆st+1,

which implies that

st = Etst+1 +R∗t −Rt

=
X∞

i=0
(R∗t+i −Rt+i).

From PPP and the two money markets, international differences in money supplies or output

affect the interest differential and through this the (log) nominal exchange rate st. The solution

for the exchange rate was shown to be

st =

µ
λ

1 + λ

¶n
Etst+n +

λ

1 + λ

Xn−1

i=0

µ
λ

1 + λ

¶i
Et

h
˜
mt+i −

˜
yt+i

i
where

˜
mt = mt −m∗t , the log difference between the money supplies.

It follows that the effect on st of an unexpected increase in mt - holding the other exogenous

variables m∗t , yt and y∗t fixed - may be obtained from

st =
1

1 + λ
mt > 0.
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Hence the spot exchange rate jump depreciates. As the exchange rate returns to its original level

next period,

Etst+1 − st = −
1

1 + λ
mt < 0

This implies that there is an expected appreciation of the exchange rate next period even though

the spot rate is predicted by the Monetary Model to depreciate in the current period.

Put another way, the increase in mt reduces Rt and raises st. It also decreases R∗t − Rt and

hence, from the UIP condition, Et∆st+1 = Etst+1 − st < 0 - i.e. the exchange rate is expected to

decrease.

12.2 The Buiter-Miller (1981) model of the exchange rate - not formally a DGE model but,

apart from the backward-looking pricing equation, broadly consistent with such an interpretation

- may be represented as follows:

yt = α(st + p∗t − pt)− β(Rt −Et∆pt+1) + gt + γy∗t

mt − pt = yt − λRt

∆pt+1 = θ(yt − ynt ) + π#t

Et∆st+1 = Rt −R∗t

where y is output, yn is full employment output, g is government expenditure, s is the log exchange

rate, R is the nominal interest rate, m is log nominal money, p is the log price level, π# is target

inflation and an asterisk denotes the foreign equivalent.

(a) Stating any assumptions you make, derive the long-run solution.

(b) Derive the short-run solution for the exchange rate.

(c) Hence comment on the effects of monetary and fiscal policy.

Solution

(a) Assuming that there is a steady-state solution, and this involves a constant rate of growth

of the money supply equal to π#t , and that gt, y
∗
t , y

n
t and R

∗
t are constant in the long run, we can
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re-write the model in steady state as

y = α(s+ p∗ − p)− β(R− π#) + g + γy∗

m− p = y − λR

π# = θ(y − yn) + π#

0 = R−R∗.

It follows that y = yn, R = R∗, p = m− yn + λR∗,

s = p− p∗ +
1

α
(yn − g − γy∗) +

β

α
(R∗ − π#)

= m− β

α
π# − 1− α

α
yn − 1

α
(g + γy∗)− p∗ + (λ+

β

α
)R∗.

(b) To obtain the short-run solution first we reduce the full model to two equations - in pt and

st - by eliminating the other endogenous variables. First, eliminate Rt using the UIP condition.

Second, eliminate yt from the money demand and price equations. This gives the first equation

below. Third, eliminate yt from the money demand and demand equations. This gives the second

equation.

pt+1 − (1− θλ)pt − θλEtst+1 + θλst = at

βEtpt+1 − (β + λ)Etst+1 + (1− α− β)pt + (α+ β + λ)st = bt

where

at = θ(mt + λR∗t − ynt ) + π#t − εt+1

bt = mt − gt − γy∗t − αp∗t + (β + λ)R∗t

and εt+1 = pt+1 −Etpt+1.

Introducing the lag operator Lxt = xt−1 and L−1xt = Etxt+1, we can write the model in

matrix notation as

L−1

⎡⎢⎢⎣ 1− (1− θλ)L −θλ+ θλL

β + (1− α− β)L −(β + λ) + (α+ β + λ)L

⎤⎥⎥⎦
⎡⎢⎢⎣ pt

st

⎤⎥⎥⎦ =
⎡⎢⎢⎣ at

bt

⎤⎥⎥⎦
168



or as

L−1

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣ 1 −θλ

β −β − λ

⎤⎥⎥⎦−
⎡⎢⎢⎣ 1− θλ −θλ

α+ β − 1 −(α+ β + λ)

L

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
⎡⎢⎢⎣ pt

st

⎤⎥⎥⎦ =
⎡⎢⎢⎣ at

bt

⎤⎥⎥⎦
We now use the result in the Appendix that if

B(L)Zt = zt−1

where B(L) = I −AL then the eigenvalues can be obtained from

detB(L) = 0

We also note that

det(I −AL) = (1− λ1L)(1− λ2L)

= 1− (λ1 + λ2)L+ λ1λ2L
2

= 1− (trA)L+ (detA)L2

where the roots γi =
1
λi
are obtained from

{λ1, λ2} =
1

2
trA± 1

2
[(trA)2 − 4(detA)] 12

and are approximately

{λ1, λ2} ' {
detA

trA
, trA− detA

trA
}.

We also note that if det(I −AL)|L=1 < 0, then the solution is a saddlepath.

The model can be written as

(P −QL)Zt+1 = zt,

or as

(I − P−1QL)Zt+1 = P−1zt.

We require det(I −AL)|L=1 ≡ det(I − P−1QL)L=1. We note that

det(I − P−1Q) = (detP )−1 det(P −Q)
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Hence

det(I −AL)|L=1 ≡

⎛⎜⎜⎝det
⎡⎢⎢⎣ 1 −θλ

β −β − λ

⎤⎥⎥⎦
⎞⎟⎟⎠
−1

det

⎡⎢⎢⎣ θλ 0

1− α α

⎤⎥⎥⎦
=

αθλ

βθλ− β − λ

The model would therefore have a saddlepath solution if detP = βθλ − β − λ < 0 - i.e. if

β−1 + λ−1 > θ. It can shown that this is NOT the case as assuming a saddlepath solution gives

the wrong signs on the effects of monetary and fiscal policy. Instead we assume that λ1, λ2 > 1

Noting that the inverse of B(L) is the adjoint matrix of B(L) divided by the determinant of

B(L)

B(L)−1 =
adjB(L)

detB(L)

we can write the model as

det(I − P−1QL)Zt+1 = (1− λ1L)(1− λ2L)Zt+1

=
adj(P −QL)

detP
zt

where

adj(P −QL) =

⎡⎢⎢⎣ −(β + λ) + (α+ β + λ)L θλ− θλL

−β − (1− α− β)L 1− (1− θλ)L

⎤⎥⎥⎦
and detP = βθλ− β − λ. Assuming that λ1,λ2 > 1 we therefore have

λ1λ2L
2(1− λ−11 L−1)(1− λ−12 L−1)Zt+1 =

adj(P −QL)

detP
zt

Thus

Zt+1 =
1

λ1 + λ2
L−2[

λ−11
1− λ−11 L−1

+
λ−12

1− λ−12 L−1
]
adj(P −QL)

detP
zt

=
1

λ1 + λ2
Σi=0[λ

−(i+1)
1 L−(i+2) + λ

−(i+1)
2 L−(i+2)]

adj(P −QL)

detP
zt

It can now be shown that the solution for the exchange rate in response to the exogenous variables
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mt and gt is

st =
1

(λ1 + λ2)(β + λ− βθλ)
Σi=0[λ

−(i+1)
1 L−(i+1) + λ

−(i+1)
2 L−(i+1)]{[(1− θβ) + L]mt

+[(1− (1− θλ)L]gt}

=
1

(λ1 + λ2)(β + λ− βθλ)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Σi=0{[λ−(i+1)1 + λ

−(i+1)
2 ][[1− θλ− θ(1− α− β)]Etmt+i

+(1− θβ)Etmt+i+1]

−Σi=0{[λ−(i+1)1 + λ
−(i+1)
2 ][(1− θλ)Etgt+i −Etgt+i+1]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(c) It can now be seen that in the long run an increase in the money supply causes the exchange

rate to depreciate due to a fall in the doemstic interest rate, and an increase in government

expenditures causes the exchange rate to appreciate due to a rise in the interest rate. The impact

effect of an increase inmt is to depreciate the exchange rate if 1−θλ−θ(1−α−β) > 0. The impact

effect of an increase in gt is to appreciate the exchange rate if 1 − θλ > 0. But an anticipated

increase in gt+1 would cause the exchange rate to depreciate in period t in order that it would be

expected to appreciate between periods t and t+ 1 as a result of the change in gt+1.

12.3 Consider a small cash-in-advance open economy with a flexible exchange rate in which

output is exogenous, there is Calvo pricing, PPP holds in the long run, UIP holds and households

maximize Σ∞j=0β
j ln ct+j subject to their budget constraint

St∆Ft+1 +∆Mt+1 + Ptct = Ptxt +R∗tStFt

where Pt is the general price level, ct is consumption, xt is output, Ft is the net foreign asset

position, Mt is the nominal money stock, St is the nominal exchange rate and R∗t is the foreign

nominal interest rate.

(a) Derive the steady-state solution of the model when output is fixed.

(b) Obtain a log-linear approximation to the model suitable for analysing its short-run behavior

(c) Comment on its dynamic properties.
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(a) The problem for the domestic economy is to maximize Σ∞j=0β
j ln ct+j with respect to

consumption, money and net foreign asset holdings subject to the budget constraint and the

cash-in-advance constraint. The Lagrangian is

L =
∞X
j=0

⎧⎪⎪⎨⎪⎪⎩
βj ln ct+j + λt+j [Pt+jxt+j + (1 +R∗t+j)St+jFt+j +Mt+j

−St+jFt+j+1 −Mt+j+1 − Pt+jct+j ]+μt+j(Mt+j − Pt+jct+j)

⎫⎪⎪⎬⎪⎪⎭ .

The first-order conditions are

∂L
∂ct+j

=
βj

ct+j
− (λt+j + μt+j)Pt+j = 0 j ≥ 0

∂L
∂Ft+j

= λt+j(1 +R∗t+j)St+j − λt+j−1St+j−1 = 0 j > 0

∂L
∂Mt+j

= λt+j − λt+j−1 + μt+j = 0 j > 0.

The consumption Euler equation is therefore

βctPtSt+1(1 +R∗t )

Pt+1Stct+1
=

βctPt(1 +Rt)

Pt+1ct+1
=

βct(1 + rt)

ct+1
= 1.

where rt is the real interest rate defined by

1 + rt =
1 +Rt

1 + ∆Pt+1
Pt

.

In steady state, ∆ct+1 = 0 and , if β = 1
1+θ , then rt = θ. The steady-state level of consumption

is

c = x+RSf

where xt = x and f = F
P is the real foreign asset position.

(b) In the short run the economy is described by the following equations

βctPt(1 +Rt)

Pt+1ct+1
= 1

St∆Ft+1 +∆Mt+1 + Ptct = Ptxt +R∗tStFt

Mt = Ptct

πt =
ρ(1− γ)

1− ργ
(st + p∗t − pt−1) +

γ

1− ργ
πt+1

1 +Rt =
St+1(1 +R∗t )

St
,
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where the fourth equation is the Calvo pricing equation (see Ch 9 for the definition of the para-

meters) and the fifth equation is UIP; pt = lnPt, πt = ∆pt and st + p∗t is the "desired" value of

pt, which is the logarithm of the PPP price where st = lnSt and p∗t = lnP
∗
t , the world price. In

the pricing equation and UIP the conditional expectation has been omitted.

A log-linear approximation to the model about π = R∗ = 0 is

∆ ln ct+1 = Rt + πt+1 − θ

Sf

c
∆ ln ft+1 +

m

c
∆ lnmt+1 + ln ct +

Sf +m

c
πt+1 =

x

c
lnxt +

Sf

c
Rt

πt =
ρ(1− γ)

1− ργ
(st + p∗t − pt−1) +

γ

1− ργ
πt+1

Rt = R∗t +∆st+1

where mt =
Mt

Pt
and m

c = 1.

The dynamic behavior of the model must be analysed numerically due to the number of roots

the model has. The presence of both leading and lagged terms indicates that the solution to

the model will have both forward and backward looking components and, almost certainly, a

saddlepath solution. The backward-looking component is due to the Calvo pricing equation. If

ρ = 0 then the solution would be just forward looking. This is when the probability of being able

to adjust prices in any period is zero.

Numerical analysis shows, for example, that a temporary increase in domestic money causes

a temporary depreciation of the exchange rate, a temporary increase in the domestic price level

and consumption and a temporary fall in the domestic interest rate. A temporary increase in

foreign prices (i.e. to the target price level) causes a temporary appreciation of the exchange

rate, a temporary increase in the domestic price level and interest rate and a temporary fall in

consumption. In each case the movement in domestic prices is small and the exchange rate is large

showing the key role of a floating exchange rate in smoothing domestic prices from such shocks.

12.4. Suppose the global economy consists of two identical countries who take output as given,
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have cash-in-advance demands for money based on the consumption of domestic and foreign goods

and services, and who may borrow or save either through domestic or foreign bonds. Purchasing

power parity holds and the domestic and foreign money supplies are exogenous. Global nominal

bond holding satisfies Bt + StB
∗
t = 0 where St is the domestic price of nominal exchange and

Bt is the nominal supply of domestic bonds. The two countries maximize Σ∞j=0β
j ln ct+j and

Σ∞j=0β
j ln c∗t+j , respectively, where ct is real consumption. Foreign equivalents are denoted with

an asterisk.

(a) Derive the solutions for consumption and the nominal exchange rate.

(b) What are the effects of increases in

(i) the domestic money supply and

(ii) domestic output?

Solution

(a) Let the two countries be a (the domestic economy) and b (the foreign economy). Consider

first the domestic economy. The nominal budget constraint is

∆Ba
t+1 + St∆B

a∗
t+1 +∆M

a
t+1 + St∆M

a∗
t+1 + Ptc

a
t + StP

∗
t c

a∗
t = Ptxt +RtB

a
t + StR

∗
tB

a∗
t

where Pt is the general price level, cat and ca∗t are domestic consumption of domestic and foreign

goods and services, Ba
t and Ba∗

t are domestic nominal bond holdings, Ma
t and Ma∗

t are domes-

tic nominal money holdings required for purchasing domestic and foreign goods and services,

respectively, and Rt and R∗t are the domestic and foreign nominal interest rates.

PPP - or the law of one price as there is only one good produced in each country - implies

that Pt = StP
∗
t and the cash-in-advance constraints give Ptc

a
t =Ma

t and P ∗t c
a∗
t =Ma∗

t . Further,

ct = cat + ca∗t .

The problem for the domestic economy therefore is to maximize with respect to consumption
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and bond holdings the Lagrangian

L =
∞X
j=0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
βj ln ct+j + λt+j [Pt+jxt+j + (1 +Rt+j)B

a
t+j + St+j(1 +R∗t+j)B

a∗
t+j +Ma

t+j + St+jM
a∗
t+j

−Ba
t+j+1 − St+jB

a∗
t+j+1 −Ma

t+j+1 − St+j∆M
a∗
t+j+1 − Pt+jc

a
t+j − St+jP

∗
t+jc

a∗
t+j ]

+μt+j(M
a
t+j − Pt+jc

a
t+j) + νt+j(St+jM

a∗
t+j − St+jP

∗
t+jc

a∗
t+j)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

The first-order conditions are

∂L
∂cat+j

=
βj

ct+j
− (λt+j + μt+j)Pt+j = 0 j ≥ 0

∂L
∂cbt+j

=
βj

ct+j
− (λt+j + νt+j)St+jP

∗
t+j = 0 j ≥ 0

∂L
∂Ba

t+j

= λt+j(1 +Rt+j)− λt+j−1 = 0 j > 0

∂L
∂Ba∗

t+j

= λt+jSt+j(1 +R∗t+j)− λt+j−1St+j−1 = 0 j > 0

∂L
∂Ma

t+j

= λt+j − λt+j−1 + μt+j = 0 j > 0

∂L
∂Ma∗

t+j

= λt+j − λt+j−1 + νt+jSt+j = 0 j > 0.

It follows from the third and fourth equations that

1 +Rt+1 =
St+1(1 +R∗t+1)

St

which is the uncovered interest parity condition (based on perfect foresight). Given PPP, the

consumption Euler equation is

βctPt(1 +Rt)

Pt+1ct+1
=

βct(1 + rt)

ct+1
= 1.

where rt is the real interest rate defined by

1 + rt =
1 +Rt

1 + ∆Pt+1
Pt

.

For the foreign country the budget constraint is

∆Bb∗
t+1 +∆B

b
t+1/St +∆M

b∗
t+1 +∆M

b
t+1/St + P ∗t c

b∗
t + Ptc

b
t/St = P ∗t x

∗
t +R∗tB

b∗
t +RtB

b
t/St,

and the Euler equation is

βc∗t (1 + r∗t )

c∗t+1
= 1.
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In steady state, ∆ct+1 = ∆c∗t+1 = 0 and , if β =
1
1+θ , then rt = r∗t = θ. It follows from UIP

that

Pt
Pt+1

(1 +Rt+1) =
P ∗t
P ∗t+1

(1 +R∗t+1)

=
StP

∗
t

St+1P ∗t+1
(1 +Rt+1)

or

Pt
Pt+1

=
StP

∗
t

St+1P ∗t+1

which is relative PPP; it also follows from PPP.

Noting that Bt = Ba
t +Bb

t , B
∗
t = Ba∗

t +Bb∗
t , Mt =Ma

t +M b
t and M∗t =Ma∗

t +Mb∗
t , the sum

of the two budget constraints is

Bt+1+StB
∗
t+1+∆Mt+1+St∆M

∗
t+1+Ptct+StP

∗
t c
∗
t = Ptxt+StP

∗
t x
∗
t +(1+Rt)Bt+St(1+R∗t )B

∗
t .

Hence, from the condition Bt + StB
∗
t = 0 and PPP,

ct + c∗t = xt + x∗t −∆mt+1 − πt+1mt+1 −∆m∗t+1 − π∗t+1m
∗
t+1.

where mt =
Mt

Pt
, πt+1 =

∆Pt+1
Pt

and an asterisk denotes the foreign equivalent. Thus, total "world"

consumption equals total "world" income less changes in domestic and real money balances and

the effects of domestic and foreign inflation in eroding real money balances. In steady state, the

changes in real balances are zero and so world consumption equals total world income less inflation

effects on real balances.

The nominal exchange rate is obtained from the relative money supplies of the two countries

(which equals their relative money demands) which, as PPP holds and consumption is the same

in each country, is

Mt

M∗t
=

Ma
t +M b

t

Ma∗
t +M b∗

t

=
Ptc

a
t + Ptc

b∗
t

P ∗t c
a∗
t + P ∗t c

b
t

=
Pt(c

a
t + cb∗t )

P ∗t (c
a∗
t + cbt)

= St
cat + cb∗t
ca∗t + cbt
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Hence

St =
Mt

M∗t

ca∗t + cbt
cat + cb∗t

.

If the two countries had identical incomes then this would reduce to St = Mt

M∗t
.

(b) (i) An increase in the domestic money supply would raise St proportionally, i.e. cause a

depreciation of the exchange rate. It would also cause a corresponding increase in the domestic

price level, thereby maintaining the real domestic money supply. Consumption would remain

unchanged.

(ii) As utility is a function of total output, domestic and foreign output are perfect substitutes.

Consequently, the domestic economy can choose to consume only domestic output and not import

from abroad. An increase in domestic income would cause a corresponding increase in domestic

consumption. This would raise the demand for real money. As the nominal money supply is

unchanged, a fall in the domestic price level is required. Since PPP holds, the nominal exchange

rate St must therefore fall, i.e. the exchange rate appreciates.

12.5 Consider a world consisting of two economies A and B. Each produces a single tradeable

good and issues a risky one-period bond with real rate of returns rAt and rBt , respectively.

(a) Express the real exchange rate et between these countries in terms of their marginal utilities.

(b) Derive the real interest parity condition.

(c) How is this affected in the following cases:

(i) both countries are risk neutral,

(ii) markets are complete?

Solution

(a) Each country maximizes inter-temporal utility subject to their nominal budget constraint
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then each satisfies the first-order conditions

βjU 0t+j = λt+jPt+j j ≥ 0

λt+j(1 +Rt+j)− λt+j−1 = 0 j > 0

where U 0 is marginal utility, P is the price level, R is the nominal return and λ is the Lagrange

multiplier (the marginal utility of wealth). Hence

PA
t

PB
t

=
U 0At
U 0Bt

λBt
λAt

If St is the nominal exchange rate (the price of country A’s currency in terms of country B’s) then

the real exchange rate is

et =
StP

A
t

PB
t

= St
U 0At
U 0Bt

λBt
λAt

(b) Eliminating the Lagrange multipliers from the two first-order conditions gives the Euler

equation

βU 0t+1Pt(1 +Rt+1)

U 0tPt+1
=

βU 0t+1(1 + rt+1)

U 0t
= 1

where

1 + rt+1 =
Pt(1 +Rt+1)

Pt+1

hence rA and rB are related through

βAU 0At+1(1 + rAt+1)

U 0At
=

βBU 0Bt+1(1 + rBt+1)

U 0Bt
.

or

1 + rAt+1
1 + rBt+1

=
βBU 0Bt+1/U

0B
t

βAU 0At+1/U
0A
t

.

(c) (i) Under risk neutrality U
0

t = ct. Hence

1 + rAt+1
1 + rBt+1

=
βBcBt+1/c

B
t

βAcAt+1/c
A
t

(ii) In complete markets U
0A
t = U

0B

t and βA = βB. Hence

rAt+1 = rBt+1.
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Chapter 13

13.1. Consider the following characterizations of the IS-LM and DGE models:

IS-LM

y = c(y, r) + i(y, r) + g

m− p = L(y, r)

DGE

∆c = − 1
σ
(r − θ) = 0

y = c+ i+ g

y = f(k)

∆k = i

fk = r

where y is output, c is consumption, i is investment, k is the capital stock, g is government

expenditure, r is the real interest rate, m is log nominal money and p is the log price level.

(a) Comment on the main differences in the two models and on the underlying approaches to

macroeconomics.

(b) Comment on the implications of the two models for the effectiveness of monetary and fiscal

policy.

Solution

(a) The first two equations are IS and LM equations denoting equilibrium in the goods and

money markets respectively. They incorporate the consumption and investment functions and the

demand for money. The IS and LM equations determine y and r. It is implicitly assumed that

there is no inflation, hence the real interest rate is present instead of the nominal interest rate.

The principal additional feature of the DGE model is the inclusion of capital. This is a crucial

difference. Whereas equilibrium in the DGE model is unique, involving a single value of the capital
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stock, equilibrium in the IS-LM model is not unique as it is consistent with an infinity of values of

the capital stock. The equilibrium in the DGE model is known as a stock equilibrium, and that

in the IS-LM model is a flow equilibrium.

The determination of the capital stock involves an inter-temporal decision, i.e. concern not just

for the present but also the future. There would no point in retaining any capital after the current

period if there were no future. The presence of investment in the IS-LM model and the absence of

capital indicates an emphasis on the present unaffected by future considerations. Consequently,

the IS-LM model is at best suited to the short-term, whereas the DGE model is also appropriate

for the longer term and, in particular, for the analysis of growth.

These distinctions arise from a more fundamental difference in approach to macroeconomics.

The key issue dealt with in the DGE model is that of consumption today or consumption in

the future. The role of investment, and hence capital, is that of transferring resources from

consumption today to consumption in the future. The real interest rate plays a key role in this

decision as it determines whether or not deferring consumption increases utility. The real interest

rate is obtained from the productivity of capital rather than monetary policy.

(b) The Keynesian IS-LM model was developed in an era of low inflation. An increase in the

nominal money supply was therefore, in effect, an increase in the real money supply and, according

to the IS-LM model, this has real effects - on output and the real interest rate. In particular, a

monetary expansion raises output.

Money is absent in the RBC model. When introduced in the form of a cash-in-advance con-

straint, changes in nominal money have no effect on real variables due to a corresponding change

in the price level that leaves real money balances unchanged. Thus monetary policy is ineffective.

Accumulated empirical evidence showed that in fact money did have real effects, but only in

the short term - for about 18 months - until the price level caught up, after which the predictions

of the RBC model held. The second generation of DGE models (or dynamic stochastic general
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equilibrium - DSGE - models, if allowance is made for uncertainty), which introduced sticky prices,

were largely designed to deal with this problem.

Fiscal policy in the IS-LM model has a strong real effect. This is because both the household

and the government budget constraints are ignored. It is implicitly assumed that any government

deficit is either bond or money financed but the need to redeem bonds in the future, and the

inflation tax associated with nominal money expansion, are also ignored.

In the DGE model above, an increase in government expenditures crowd out consumption one

for one, and there is no effect on output. This is because, implicitly, households perceive that

taxes will rise in the future to pay for the increase in government expenditures. Fiscal policy is

therefore ineffective in this DGE model.

Evidence on whether in fact fiscal policy has any effect on output is still unclear and divides

professional opinion. The case for its effectiveness requires a weakening of some of the assumptions

of this DGE model. For example, perhaps some households are myopic about the future, or some

households face borrowing constraints and are therefore unable to smooth consumption, or markets

fail to clear resulting in unemployed resources, especially of labor. Once again, these are essentially

short-term phenomena.

13.2. (a) How might a country’s international monetary arrangements affect its conduct of

monetary policy?

(b) What other factors might influence the way it carries out its monetary policy?

Solution

(a) The prime aims of international monetary arrangements are to facilitate economic activity

and maintain competitiveness. Some types of arrangements also control prices and inflation and

supplant domestic monetary policy. Others require a separate monetary policy.

The main types of internationbal monetary arrangements are the gold standard, and fixed or

floating exchange rates. Under the gold standard, competitiveness is automatically maintained by
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fluctuations in the price level. If prices are not sufficiently flexible, recessions may occur whilst

prices adjust. There is no tendency for inflation unless the gold supply increases either as result

of domestic or world gold extraction, or domestic accumulation of gold through persistent trade

surpluses - or, historically, as bounty. The role of monetary policy under the gold standard is to

maintain a fixed parity between gold and fiat currency.

Under fixed exchange rates domestic currency has a fixed rate of exchange rate with other

currencies. In practice, domestic currency is tied to a world reserve currency, currently the US

dollar. This implies that US monetary policy is not necessarily tied to anything and is at the

discretion of the US. The monetary policy of countries tied to the dollar is curtailed; it is simply

to maintain the fixed parity. This requires maintaining competitiveness using interest rates. The

euro system is a slightly different fixed exchange rate arrangement, involving a common currency

administered by a federal body, the ECB. As in the US federal system, the same currency is used

in each country (state).

Under a floating rate system a country has no foreign nominal anchor and must use its monetary

policy to provide one. In effect, each country therefore becomes like the US in this respect.

(b) If, in the long run, inflation is entirely a monetary phenomenon, long-run monetary policy

must be to control inflation. In the short run, however, as monetary policy has real effects, it may

also be used for stabilization policy. This can be with the aim of controlling domestic demand or

the exchange rate, and hence competitiveness and trade. The remits of central banks differ in the

extent to which monetary policy is allowed to be used for stabilization policy. For example, the

Bank of England and the ECB act as strict inflation targeters while the US Fed acts as a flexible

inflation targeter.

13.3. The Lucas-Sargent proposition is that systematic monetary policy is ineffective. Examine
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this hypothesis using the following model of the economy due to Bull and Frydman (1983):

yt = α1 + α2(pt −Et−1pt) + ut

dt = β(mt − pt) + vt

∆pt = θ(p∗t − pt−1),

where y is output, d is aggregate demand, p is the log price level, p∗ is the market clearing price,

m is log nominal money and u and v are mean zero mutually and serially independent shocks.

(a) Derive the solutions for output and prices.

(b) If mt = μ+ εt where εt is a mean zero, serially independent shock, comment on the effect

on prices of

(i) an unanticipated shock to money in period t,

(ii) a temporary anticipated shock to money in period t,

(iii) a permanent anticipated shock to money in period t.

(c) Hence comment on the Lucas-Sargent proposition.

Solution

(a) Under market clearing yt = dt hence the market-clearing price evolves according to

(α2 + β)p∗t − α2Et−1p
∗
t = −α1 + βmt − ut + vt = −α1 + et.

If the solution to p∗t is p
∗
t = γ +A(L)et then

βγ + (α2 + β)A(L)− α2[A(L)− a0)]et = −α1 + et.

Hence,

A(L) =
1− α2a0

β

γ = −α1
β
.

The solution is therefore

p∗t = −
α1
β
+
1− α2a0

β
et.
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Due to the presence of a0 the solution is not fully determined.

To derive the solution for pt we substitute the solution for p∗t in the third equation to obtain

pt = −
θα1
β
+ (1− θ)pt−1 +

θ(1− α2a0)

β
et.

It follows that

pt −Et−1pt =
θ(1− α2a0)

β
et.

Hence the solution for yt is

yt = α1 +
α2θ(1− α2a0)

β
et + ut

= α1 +
α2θ(1− α2a0)

β
(βmt + vt) + (1−

α2θ(1− α2a0)

β
)ut.

(b) (i) If mt = μ+ εt then an unanticipated shock in period t is a change in εt. The effect on

pt is obtained from

pt = −
θα1
β
+ (1− θ)pt−1 +

βθ(1− α2a0)

β
εt.

(ii) A temporary anticipated shock has the same effect as the solution is backward and not

forward looking.

(iii) From the short-run solution for pt, the long-run solution is obtained from

pt = −α1
β
+
1− α2a0

β
et

= −α1
β
+
1− α2a0

β
(βmt − ut + vt)

= −α1
β
+
1− α2a0

β
[β(μ+ εt)− ut + vt],

and is

p = −α1
β
+ (1− α2a0)μ.

In the model, equilibrium implies that ∆pt = 0, p∗t = pt−1, Et−1pt = pt, dt = yt and ut = vt =

εt = 0. Hence we obtain

p = −α1
β
+ μ.

184



The solutions are the same if a0 = 0.

(c) The ineffectiveness referred to in the Lucas-Sargent proposition is the effect of money on

output. The solution above shows that money affects output in the short run but not the long

run.

13.4. Consider the following model of the economy:

xt = −β(Rt −Etπt+1 − r)

πt = Etπt+1 + αxt + et

Rt = γ(Etπt+1 − π∗),

where πt is inflation, π∗ is target inflation, xt is the output gap, Rt is the nominal interest rate

and et is a mean zero serially independent shock.

(a) Why is the interest rate equation misspecified?

(b) Correct the specification and state the long-run solution.

(c) What are the short-run solutions for πt, xt and Rt?

(d) In the correctly specified model how would the behavior of inflation, output and monetary

policy be affected by

(i) a temporary shock et

(ii) an expected shock et+1?

(e) Suppose that the output equation is modified to

xt = −β(Rt −Etπt+1 − r)− θet,

where et can be interpreted as a supply shock. How would the behavior of inflation, output and

monetary policy be affected by a supply shock?

Solution
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(a) The interest rate equation is misspecified unless the real interest rate r and target inflation

sum to zero. Otherwise it should be

Rt = r + π∗ + γ(Etπt+1 − π∗).

(b) The long-run solutions are then x = 0, π = π∗ and R = r + π∗.

(c) Solving the model for πt we obtain

πt = [1− αβ(γ − 1)]Etπt+1 + αβ(γ − 1)π∗ + et.

This has a unique forward-looking solution if γ > 1 and is

πt = π∗ + Σ∞s=0[1− αβ(γ − 1)]−sEtet+s

= π∗ + et.

As Etπt+1 = π∗, the short-run solutions for xt and Rt are

xt = 0

Rt = r + π∗.

(d) (i) In period t inflation would increase by the full amount of the temporary shock et, but

output and the nominal interest rate would be unaffected.

(ii) If Etet+1 = et+1 then

πt = π∗ + [1− αβ(γ − 1)]−1et+1

xt = −β(γ − 1)[1− αβ(γ − 1)]−1et+1

Rt = r + π∗ + γ[1− αβ(γ − 1)]−1et+1.

(e) The shock et now raises inflation and reduces output, which is characteristic of a supply
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shock. The short-run solutions are now

πt = π∗ +Σ∞s=0(1− αθ)[1− αβ(γ − 1)]−sEtet+s

= π∗ + (1− αθ)et

xt = −θet

Rt = r + π∗.

Hence the effect of a temporary shock on inflation is less but now output falls. Monetary policy

is still unaffected by the shock. This is because it responds to expected future, and not current,

inflation.

13.5 Consider the following New Keynesian model:

πt = φ+ βEtπt+1 + γxt + eπt

xt = Etxt+1 − α(Rt −Etπt+1 − θ) + ext

Rt = θ + π∗ + μ(πt − π∗) + υxt + eRt,

where πt is inflation, π∗ is target inflation, xt is the output gap, Rt is the nominal interest rate,

eπt, ext and eRt are independent, zero-mean iid processes and φ = (1− β)π∗.

(a) What is the long-run solution?

(b) Write the model in matrix form and obtain the short-run solutions for inflation and the

output gap when μ̇ > 1 and μ < 1.

(c) Assuming the shocks are uncorrelated, derive the variance of inflation in each case and

comment on how the choice of μ and ν affects the variance of inflation

(d) Hence comment on how to tell whether the "great moderation" of inflation in the early

2000’s was due to good policy or to good fortune.

Solution
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(a) The long-run solution is π = π∗, x = 0 and R = θ + π∗.

(b) The model written in matrix form is⎡⎢⎢⎢⎢⎢⎢⎣
1− βL−1 −γ 0

−αL−1 1− L−1 α

−μ −ν 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
πt

xt

Rt

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

φ

αθ

θ + π∗(1− μ)

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣

eπt

ext

eRt

⎤⎥⎥⎥⎥⎥⎥⎦ .

This has the general structure

B(L)zt = η + ξt.

The inverse of B(L) is

B(L)−1 =
1

f(L)L−2

⎡⎢⎢⎢⎢⎢⎢⎣
1 + αν − L−1 γ −αγ

−α(μ− L−1) 1− βL−1 −α(1− βL−1)

μ+ (αν − μ)L−1 (ν + μγ) + βνL−1 1 + (1 + β + αγ)L−1 + βL−2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where the determinant of B(L) is

f(L)L−2 = 1 + α(ν + μγ)− [1 + β(1 + αυ) + αγ]L−1 + βL−2.

Premultiplying the matrix equation by the adjoint of B(L) gives the following equation for πt

[1 + α(υ + μγ)]πt − [1 + β(1 + αυ) + αγ]Etπt+1 + βEtπt+2 = vt,

where

vt = α(νφ− γπ∗) + (1 + αυ)eπt + γext − αγeRt

and L−1eπt = Eteπ,t+1 = 0, etc.

Writing the solution for πt as πt = a + A(L)εt, and vt as vt = b + φ(L)εt, the equation for

inflation can be re-written as

{[1 + α(υ + μγ)]A(L)− [1 + β(1 + αυ) + αγ]L−1[A(L)− a0]

+βL−2[A(L)− a0 − a1L]}εt = φ(L)εt
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where b = απ∗[ν(1− β) + γ(μ− 1)]. Hence

A(L) =
[β − (1 + β(1 + αυ) + αγ)L]a0 + βLa1 + L2φ(L)

β − [1 + β(1 + αυ) + αγ]L+ [1 + α(υ + μγ)]L2
,

and the characteristic equation is

f(L) = β − [1 + β(1 + αυ) + αγ]L+ [1 + α(υ + μγ)]L2 = 0.

In general, there are two cases to consider: f(1) = α[ν(1−β)+ γ(μ− 1)] ≷ 0. These two cases

largely reflect whether μ ≷ 1. If μ > 1 (the Taylor rule sets μ = 1.5) monetary policy responds

strongly to inflation; but if μ < 1 then the monetary response is weak.

Case 1: f(1) = α[ν(1− β) + γ(μ− 1)] > 0

We may assume this is because μ > 1. In this case both roots are either stable or unstable.

Consider the product of the roots of f(L) = 0 which, normalizing the coefficient of L2, is β
1+α(υ+μγ) .

As 1 > β
1+α(υ+μγ) > 0 the product of the roots is less than unity and positive. Hence they are

unstable. We denote the roots by 0 < η1, η2 < 1.

Using the method of residues gives for i = 1, 2

lim
L→ηi

f(L)A(L) = lim
L→ηi

[1 + α(υ + μγ)](L− η1)(L− η2)A(L)

= [β − (1 + β(1 + αυ) + αγ)ηi]a0 + βηia1 + η2iφ(ηi)

= 0.

This gives two equations in the two unknowns a0 and a1. Hence a0 and a1 are uniquely determined.

The solution for πt can therefore be obtained as

πt =
1

[1 + α(υ + μγ)]L−2(L− η1)(L− η2)
vt

=
1

[1 + α(υ + μγ)](1− η1L
−1)(1− η2L

−1)
vt

=
1

[1 + α(υ + μγ)](η1 − η2)
[

η1
1− η1L

−1 −
η2

1− η2L
−1 ]vt

=
1

1 + α(υ + μγ)
[

η1
η1 − η2

Σ∞s=0η
s
1Etvt+s −

η2
η1 − η2

Σ∞s=0η
s
2Etvt+s].
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The solution uses the value of vt. This is the first element of the right-hand side of the matrix

solution. For πt the solution is

πt = π∗ +
1

1 + α(υ + μγ)
[(1 + αυ)eπt + γext − αγeRt].

Thus, average inflation equals the target rate. Hence a = π∗. Inflation deviates from target due

to the three shocks. Positive inflation and output shocks cause inflation to rise above target, but

positive interest rate shocks cause inflation to fall below target. We note that a forward-looking

Taylor rule in which Etπt+1 replaces πt and Etxt+1 replaces xt gives a similar result.

The basic solution for the output gap is the same as for πt. The difference is in the definition

of vt. (Or substitute for Rt from the policy rule and for Etπt+1 = π∗.) Consequently,

xt = Etxt+1 − α(Rt − π∗ − θ) + ext

= Etxt+1 − αμ(πt − π∗)− αμυxt + ext − αeRt

= Etxt+1 −
αμ

1 + α(υ + μγ)
[(1 + αυ)eπt + γext − αγeRt]− αμυxt + ext − αeRt

=
1

1 + αμυ
Etxt+1 −

1

1 + α(υ + μγ)
(αμeπt + ext − eRt).

Solving forwards gives the solution for xt as

xt = −
1

1 + α(υ + μγ)
(αμeπt + ext − eRt).

Hence the expected output gap is zero.

Case 2 : f(1) = α[ν(1− β) + γ(μ− 1)] < 0

This is probably because μ < 1. It implies a saddlepath solution with the roots of f(L) = 0

on each side of unity. Let η1 ≥ 1 and η2 < 1. Applying the method of residuals, we have one

restriction associated with η2 which is given by

lim
L→η2

f(L)A(L) = lim
L→η2

(L− η1)(L− η2)A(L)

= [β − (1 + β(1 + αυ) + αγ)η2]a0 + βη2a1 + η22φ(η2)

= 0
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It follows that we have only one equation and two unknowns: a0, a1. The solution is therefore

indeterminate.

Noting that

f(L)A(L) = [β − (1 + β(1 + αυ) + αγ)L]a0 + βLa1 + L2φ(L),

and that

f(L) = β − [1 + β(1 + αυ) + αγ]L+ [1 + α(υ + μγ)]L2

= [1 + α(υ + μγ)](L− η1)(L− η2)

= −[1 + α(υ + μγ)]η1L(1−
1

η1
L)(1− η2L

−1),

it follows that

(1− 1

η1
L)A(L) = − [β − (1 + β(1 + αυ) + αγ)L]a0 + βLa1 + L2φ(L)

[1 + α(υ + μγ)]η1L(1− η2L
−1)

.

Subtracting [β − (1 + β(1 + αυ) + αγ)η2]a0 + βη2a1 + η22φ(η2) = 0 from the numerator and

simplifying gives

(1− 1

η1
L)A(L)εt = − [a0αγ(L− η2) + a1β(L− η2) + L2φ(L)− η22φ(η2)

[1 + α(υ + μγ)]η1L(1− η2L
−1)

εt

= − 1

[1 + α(υ + μγ)]η1
[a0αγ + a1β +

L2φ(L)− η22φ(η2)

L(1− η2L
−1)

]εt

= − 1

[1 + α(υ + μγ)]η1
[a0αγ + a1β +

η2[η
−1
2 L− 1 + 1− η2φ(η2)L

−1φ(L)−1]φ(L)

1− η2L
−1 ]εt

= − 1

[1 + α(υ + μγ)]η1
[(a0αγ + a1β)εt − vt + η2Σ

∞
s=0η

s
2Etvt+s].

As πt = a+A(L)εt,

vt = b+ φ(L)εt

b = α(νφ− γπ∗) = απ∗[ν(1− β)− γ]

φ(L)εt = (1 + αυ)eπt + γext − αγeRt,
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the solution for πt is

πt − a =
1

η1
(πt−1 − a)− 1

[1 + α(υ + μγ)]η1
[(a0αγ + a1β)εt − (vt − b) + η2Σ

∞
s=0η

s
2Et(vt+s − b)]

=
1

η1
(πt−1 − a) +

1− a0αγ − a1β − η2
[1 + α(υ + μγ)]η1

[(1 + αυ)eπt + γext − αγeRt].

Thus, under the rule, the effect of shocks on πt is indeterminate. It can also be shown that

Eπt = a =
φ

1− β
= π∗.

Hence πt is generated by the AR(1) process

πt − π∗ =
1

η1
(πt−1 − π∗) +

1− a0αγ − a1β − η2
[1 + α(υ + μγ)]η1

[(1 + αυ)eπt + γext − αγeRt].

Thus, in this case, inflation is more persistent than in the previous case.

(c) If the shocks are uncorrelated the variance of inflation in the two cases are

Case 1:

V art(πt) =
1

[1 + α(υ + μγ)]2
[(1 + αυ)2σ2π + γ2σ2x + (αγ)

2σ2R],

where σ2i (i = π, x,R) are the variances of the shocks.

Case 2:

V ar(πt) =
1

1− η−21

∙
1− a0αγ − a1β − η2
[1 + α(υ + μγ)]η1

¸2
[(1 + αυ)2σ2π + γ2σ2x + (αγ)

2σ2R].

In Case 1, as μ → ∞, the variance of inflation goes to zero; and, for any finite value of μ, as

ν → 0 the variance of inflation decreases. This suggests that if the policy objective is to minimise

the variation of inflation about the target level π∗ - which is equivalent to minimising the variance

of inflation as Eπt = π∗ - then strict inflation targeting (ν = 0) is preferable to flexible inflation

targeting (ν > 0).

(d) There has been a debate about whether the "great moderation" of the 2000’s was due to

good policy or good luck. Our results indicate that good policy requires that μ > 1 and that there
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are no shocks to the policy equation so that σ2R = 0. Good luck is when the variances of inflation

and the output gap (σ2π and σ2x) are small.

We also recall that in this model another advantage of a strong monetary policy response to

inflation is that inflation is not then persistent. In other words, inflation responds quickly to

monetary policy.

13.6. Consider the following model of Broadbent and Barro (1997):

yt = α(pt −Et−1pt) + et

dt = −βrt + εt

mt = yt + pt − λRt

rt = Rt −Et∆pt+1

yt = dt,

where et and εt are zero-mean mutually and serially correlated shocks.

(a) Derive the solution to the model

(i) under money supply targeting,

(ii) inflation targeting,

(b) Derive the optimal money supply rule if monetary policy minimizes Et(pt+1 − Etpt+1)
2

subject to the model of the economy.

(c) What does this policy imply for inflation and the nominal interest rate?

(d) Derive the optimal interest rate rule.

(e) How would these optimal policies differ if monetary policy was based on targeting inflation

instead of the price level?

Solution

(a) (i) Money supply targeting

193



The money supply mt is exogenous. The model can be reduced to one equation for the price

level

pt =
1

β(1 + λ) + α(β + λ)
[βλEtpt+1 + α(β + λ)Et−1pt − βmt + (β + λ)et − λεt]

If pt = A(L)ξt where ξt = −βmt + (β + λ)et − λεt then the equation may be re-written as

A(L)ξt =
1

β(1 + λ) + α(β + λ)
{βλ[A(L)− a0)L

−1] + α(β + λ)[A(L)− a0] + 1}ξt

Hence

A(L) =
βλ− [1− a0α(β + λ)]L

βλ− β(1 + λ)L

Since the root L = λ
1+λ < 1 we have an unstable solution. Using the method of residues

lim
L→ λ

1+λ

[βλ− β(1 + λ)L]A(L) = βλ− [1− a0α(β + λ)]
λ

1 + λ
= 0

hence

a0 =
1− β(1 + λ)

α(β + λ)

It then follows that A(L) = 1. Thus the solution is

pt = −βmt + (β + λ)et − λεt.

(ii) Inflation targeting

The interest rate Rt is now exogenous. The money demand equation can be ignored and the

rest of the model can be reduced to

pt =
β

α
Etpt+1 +Et−1pt −

β

α
Rt −

1

α
et +

1

α
εt.

If pt = A(L)ξt where ξt = −β
αRt − 1

αet +
1
αεt, then the equation may be re-written as

A(L)ξt = {
β

α
[A(L)− a0)L

−1] + [A(L)− a0] + 1}ξt.

Hence

A(L) = a0 −
1− a0
β

L.
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The solution is therefore

pt = a0ξt −
1− a0
β

ξt−1,

which is indeterminate.

(b) The optimal money supply rule is obtained by minimizing Et(pt+1 − Etpt+1)
2 subject to

pt = −βmt + (β + λ)et − λεt. As

pt+1 −Etpt+1 = β(mt+1 −Etmt+1) + (β + λ)et+1 − λεt+1,

optimal monetary policy would be to offset the shocks so that

mt+1 −Etmt+1 = −
β + λ

β
et+1 +

λ

β
εt+1.

However, as these shocks are unknown at time t, the optimal monetary policy is to keep the money

supply constant when Et(pt+1−Etpt+1) = 0. If the shocks are uncorrelated the conditional variance

of inflation is

Et(pt+1 −Etpt+1)
2 =

µ
β + λ

β

¶2
σ2e +

µ
λ

β

¶2
σ2ε.

(c) Inflation is then

pt = −βm+ (β + λ)et − λεt

and the interest rate is

Rt = Et∆pt+1 −
α

β
(pt −Et−1pt)−

1

β
et +

1

β
εt

= −1 + α(β + λ)

β
et +

1 + αλ

β
εt.

(d) The optimal interest rate rule is obtained by minimizing Et(pt+1 −Etpt+1)
2 subject to

pt = a0ξt −
1− a0
β

ξt−1

= −a0
β

α
Rt +

1− a0
α

Rt−1 −
a0
α
et +

a0
α
εt +

1− a0
αβ

et−1 −
1− a0
αβ

εt−1.
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Hence

pt+1 −Etpt+1 = −a0
β

α
(Rt+1 −EtRt+1)−

a0
α
et+1 +

a0
α
εt+1.

Optimal monetary policy would be to offset the shocks so that

Rt+1 −EtRt+1 = −
1

β
et+1 +

1

β
εt+1.

As these shocks are unknown at time t, if the shocks are uncorrelated, the optimal monetary

policy is to keep the nominal interest rate constant when

Et(pt+1 −Etpt+1)
2 =

³a0
α

´2
(σ2e + σ2ε).

(d) Under inflation targeting the equivalent objective function would be

Et(∆pt+1 −Et∆pt+1)
2 = Et(pt+1 −Etpt+1)

2

and so policy would be unchanged.

13.7. Suppose that a monetary authority is a strict inflation targeter attempting to minimize

E(πt − π∗)2 subject to the following model of the economy

πt = αtRt + zt + et,

where αt = α + εt, E(zt) = z + εzt and εαt and εzt are random measurement errors of α and z,

respectively; εαt, εzt and et are mutually and independently distributed random variables with

zero means and variances σ2z, σ
2
α and σ2e.

(a) What is the optimal monetary policy

(i) in the absence of measurement errors,

(ii) in the presence of measurement errors?

(b) What are broader implications of these results for monetary policy?

Solution
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(a) Inflation is determined by

πt = (α+ εαt)Rt + z + εzt + et.

(i) In the absence of measurement errors this becomes

πt = αRt + z + et.

The objective function can then be re-written as

E(πt − π∗)2 = E[αRt + z + et − π∗]2

= [αRt + z − π∗]2 + σ2e.

Minimizing this with respect to Rt gives

2α(αRt + z − π∗) = 0,

or

Rt =
1

α
(π∗ − z).

(ii) In the presence of measurement errors

E(πt − π∗)2 = E[(α+ εαt)Rt + z + εzt + et − π∗]2

= [αRt + z − π∗]2 + σ2αR
2
t + σ2z + σ2e.

Minimizing this with respect to Rt gives

2α(αRt + z − π∗) + 2σ2αRt = 0.

Hence,

Rt =
α

α2 + σ2α
(π∗ − z)

≶ 1

α
(π∗ − z) as π∗ ≷ z.
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(b) These results show that optimal monetary policy does not respond to either shocks or

measurement errors, but only to the mean of zt. However, the presence of measurement errors in

the coefficient of Rt tends to reduce the absolute size of the monetary response.

13.8. A highly stylized model of an open economy is

pt = αpt−1 + θ(st − pt)

st = Rt +Rt+1,

where pt is the price level, st is the exchange rate and Rt is the nominal interest rate. Suppose

that monetary policy aims to choose Rt and Rt+1 to minimize

L = (pt − p∗)2 + β(pt+1 − p∗)2 + γ(Rt −R∗)2,

where pt−1 = Rt+2 = 0.

(a) Find the time consistent solutions for Rt and Rt+1. (Hint: first find Rt+1 taking Rt as

given.)

(b) Find the optimal solution by optimizing simultaneously with respect to Rt and Rt+1.

(c) Compare the two solutions and the significance of γ.

Solution

(a) The price level is determined by

pt =
α

1 + θ
pt−1 +

θ

1 + θ
(Rt +Rt+1)

=
θ

1 + θ
(Rt +Rt+1).

The loss function can therefore be re-written as

L = [
θ

1 + θ
(Rt +Rt+1)− p∗]2 + β[

θ

1 + θ
Rt+1 +

αθ

(1 + θ)2
(Rt +Rt+1)− p∗]2 + γ(Rt −R∗)2.
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Minimizing this with respect to Rt+1 taking pt and Rt as given yields

∂L

∂Rt+1
= 2

θ

1 + θ
[

θ

1 + θ
(Rt +Rt+1)− p∗]

+2β
θ

1 + θ
(1 +

α

1 + θ
)[

θ

1 + θ
Rt+1 +

αθ

(1 + θ)2
(Rt +Rt+1)− p∗]

= 0.

Hence,

Rt+1 = −
1 + α

1+θ (1 +
α
1+θ )

1 + (1 + α
1+θ )

2
Rt +

2(1 + θ) + α

1 + (1 + α
1+θ )

2
p∗

= −μRt + δp∗.

Next maximize L with respect to Rt and Rt+1 subject to this solution for Rt+1 as a constraint

with Lagrange multiplier λ. The first-order conditions are

∂L

∂Rt+1
= λ+ 2

θ

1 + θ
[

θ

1 + θ
(Rt +Rt+1)− p∗]

+2β
θ

1 + θ
(1 +

α

1 + θ
)[

θ

1 + θ
Rt+1 +

αθ

(1 + θ)2
(Rt +Rt+1)− p∗]

= 0,

and

∂L

∂Rt
= −λμ+ 2 θ

1 + θ
[

θ

1 + θ
(Rt +Rt+1)− p∗]

+2β
θ

1 + θ
(1 +

α

1 + θ
)[

αθ

(1 + θ)2
(Rt +Rt+1)− p∗] + 2γ(Rt −R∗)

= 0.

199



Hence, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

³
θ
1+θ

´2
[1 + (1 + α

1+θ )
2]

³
θ
1+θ

´2
[1 + α

1+θ (1 +
α
1+θ )] 1³

θ
1+θ

´2
[1 + β(1 + α

1+θ )
α
1+θ ] γ +

³
θ
1+θ

´2
[1 + β(1 + α

1+θ )
α
1+θ ] −μ

1 −μ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Rt+1

Rt

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 2(1 + θ) + α

γ
³

θ
1+θ

´2
[1 + β(1 + α

1+θ )
α
1+θ ]

0 δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣ R∗

p∗

⎤⎥⎥⎥⎥⎥⎦

from which Rt+1 and Rt can be solved.

(b) Maximizing L with respect to Rt+1 and Rt gives

∂L

∂Rt+1
= 2

θ

1 + θ
[

θ

1 + θ
(Rt +Rt+1)− p∗]

+2β
θ

1 + θ
(1 +

α

1 + θ
)[

θ

1 + θ
Rt+1 +

αθ

(1 + θ)2
(Rt +Rt+1)− p∗]

= 0,

and

∂L

∂Rt
= 2

θ

1 + θ
[

θ

1 + θ
(Rt +Rt+1)− p∗]

+2β
θ

1 + θ
(1 +

α

1 + θ
)[

αθ

(1 + θ)2
(Rt +Rt+1)− p∗] + 2γ(Rt −R∗)

= 0.
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Hence, ⎡⎢⎢⎢⎢⎢⎣ 1 + (1 + α
1+θ )

2 1 + α
1+θ (1 +

α
1+θ )³

θ
1+θ

´2
[1 + β(1 + α

1+θ )
α
1+θ ] γ +

³
θ
1+θ

´2
[1 + β(1 + α

1+θ )
α
1+θ ]

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣ Rt+1

Rt

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣ 0 2(1 + θ) + α

γ
³

θ
1+θ

´2
[1 + β(1 + α

1+θ )
α
1+θ ]

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣ R∗

p∗

⎤⎥⎥⎥⎥⎥⎦ .

From which Rt+1 and Rt can be solved.

(c) Due to the constraint the two solutions will be different. Only if λ = 0 - i.e. the constraint

is ignored - are they the same. It follows that the second solution is not time consistent.

13.9. Consider the following model of an open economy:

πt = μ+ βEtπt+1 + γxt + eπt

xt = −α(Rt −Etπt+1 − θ) + φ(st + p∗t − pt) + ext

∆st+1 = Rt −R∗t + est,

where eπt, ext and est are mean zero mutually and serially independent shocks to inflation, output

and the exchange rate.

(a) Derive the long-run solution making any additional assumptions thought necessary.

(b) Derive the short-run solution for inflation

(c) Each period monetary policy is set to minimize Et(πt+1 − π∗)2, where π∗ is the long-run

solution for π, on the assumption that the interest rate chosen will remain unaltered indefinitely

and the foreign interest rate and price level will remain unchanged. Find the optimal value of Rt.

Solution
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(a) Assuming there is a unique solution, and that in the long-run PPP holds, the long-run

solution is

p = s+ p∗

π =
μ+ αγθ

1− αγ − β
− αγ

1− αγ − β
R∗

x = −α(R∗ − π − θ).

In order for the long-run output gap to be zero we need the additional assumption that π = R∗−θ.

It then follows that π = μ
1−β .

(b) The model may be written in matrix form as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1− L− β(L−1 − 1) −γ 0

φ+ α(L−1 − 1) 1 −φ

0 0 L−1 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
pt

xt

st

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ

−α(Rt − θ) + φp∗t

Rt −R∗t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eπt

ext

est

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

or

A(L)zt = wt + et.

The inverse of A(L) is

A(L)−1 = [detA(L)]−1B(L),

where

B(L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
L−1 − 1 γ(L−1 − 1) γφ

(L−1 − 1)(φ− α+ αL−1) (L−1 − 1)[1− γ(φ− α+ αL−1)] −φ(1 + β − L− βL−1)

0 0 1 + β + γ(φ− α)− L+ (αγ − β)L−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

detA(L) = (L−1 − 1)(1 + β + γ(φ− α)− L+ (αγ − β)L−1)

= −L−2(1− L){L2 − [1 + β + γ(φ− α)]L+ (β − αγ)}

= −L−2(1− L)f(L).

As f(1) = −γφ, one of its roots is greater than unity and one less than unity. Hence we may write

the roots of (1− L)f(L) as λ1 > 1, λ2 < 1 and 1. It follows that the solution to the model is

(1− L)(1− λ−11 L)(1− λ2L
−1)zt = λ−11 LB(L)(wt + et).

The solution for inflation is therefore

πt = λ−11 πt−1 + λ−11 EtΣ
∞
j=0λ

j
2[−αγRt+j + γ(α+ φ)Rt+j−1 − γφR∗t+j−1 + γφ∆p∗t+j

+∆eπ,t+j + γ∆ex,t+j + γφes,t+j−1]

= λ−11 πt−1 + λ−11 EtΣ
∞
j=0λ

j
2{−[αγ − γ(α+ φ)λ2]Rt+j − γφR∗t+j−1

+γφ∆p∗t+j}+ λ−11 γ(α+ φ)Rt−1 + λ−11 (1− λ2)eπt − λ−11 eπ,t−1

+λ−11 γ(1− λ2)ext − λ−11 γex,t−1 + λ−11 γφλ2es,t + λ−11 γφes,t−1.

(c) If EtRt+j = Rt, then inflation is generated by an equation of the form

πt = λ−11 πt−1 − λ−11 (1− λ2)
−1[αγ − γ(α+ φ)λ2]Rt + λ−11 γ(α+ φ)Rt−1

+λ−11 EtΣ
∞
j=0λ

j
2zt+j + ut

= λ−11 πt−1 − ηRt + νRt−1 + qt + ut,

where

qt = λ−11 EtΣ
∞
j=0λ

j
2zt+j

zt = −γφR∗t−1 + γφ∆p∗t

ut = λ−11 (1− λ2)eπt − λ−11 eπ,t−1 + λ−11 γ(1− λ2)ext − λ−11 γex,t−1 + λ−11 γφλ2es,t + λ−11 γφes,t−1 .
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Hence, if qt+1 is treated as a constant q,

πt+1 = λ−11 πt − ηRt+1 + νRt + qt+1 + ut+1

= λ−11 πt − (η − ν)Rt + q + ut+1

= wt + ut+1,

where

wt = λ−11 πt − (η − ν)Rt + q.

It follows that

Et(πt+1 − π∗)2 = (wt − π∗)2 + σ2u − 2λ−11 Et{πt[−λ−11 eπt − λ−11 γext + λ−11 γφest ]}.

As the last two terms do not involve Rt, the optimal value of Rt is

Rt =
λ−11 πt + q − π∗

(η − ν)

Thus, an increase in current inflation, or in current and expected future foreign interest rates, or

the foreign price level, would require a higher domestic interest rate, but temporary shocks would

have no effect.
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Chapter 14

14.1. Consider a variant on the basic real business cycle model. The economy is assumed to

maximize Et

∞P
s=0

βs ct+s
1−σ

1−σ subject to

yt = ct + it

yt = Atk
α
t

∆kt+1 = it − δkt

lnAt = ρ lnAt−1 + et,

where yt is output, ct is consumption, it is investment, kt is the capital stock, At is technical

progress and et ∼ i.i.d(0, ω2).

(a) Derive

(i) the optimal short-run solution,

(ii) the steady-state solution,

(ii) a log-linearization to the short-run solution about its steady state in ln ct − ln c and

ln kt − ln k, where ln c and ln k are the steady-state values of ln ct and ln kt.

(b) If, in practice, output, consumption and capital are non-stationary I(1) variables,

(i) comment on why this model is not a useful specification.

(ii) Suggest a simple re-specification of the model that would improve its usefulness.

(c) In practice, output, consumption and capital also have independent sources of random

variation.

(i) Why is this not compatible with this model?

(ii) Suggest possible ways in which the model might be re-specified to achieve this.

Solution

(a) (i) The economy’s resource constraint is

Atk
α
t = ct + kt+1 − (1− δ)kt.
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As technological change makes the problem stochastic, we maximize the value function

Vt = U(ct) + βEt(Vt+1)

=
ct
1−σ

1− σ
+ βEt(Vt+1),

subject to the resource constraint. The first-order conditions for this stochastic dynamic pro-

gramming problem are

∂Vt
∂ct

= c−σt + βEt[
∂Vt+1
∂ct+1

· ∂ct+1
∂ct

] = 0.

Noting that

Vt+1 = U(Ct+1) + βEt+1(Vt+2),

and hence

∂Vt+1
∂ct+1

= c−σt+1,

and that

∂ct+1
∂ct

=

∂ct+1
∂kt+1
∂ct

∂kt+1

,

from the budget constraints for periods t and t+ 1, we can show that

∂ct+1
∂ct

= αAt+1k
α−1
t+1 + 1− δ.

Hence

∂Vt
∂ct

= c−σt + βEt[c
−σ
t+1 · αAt+1k

α−1
t+1 + 1− δ] = 0.

This gives the Euler equation

Et

"
β

µ
ct+1
ct

¶−σ
(αAt+1k

α−1
t+1 + 1− δ)

#
= 1.

The optimal short-run solution to the model is the Euler equation plus the economy’s resource

constraint.

In deriving the solution to the model it is usual in RBC analysis to invoke certainty equivalence.

This allows all random variables to be replaced by their conditional expectations. In the Euler
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equation, strictly we should take account of the conditional covariance terms involving ct+1, kt+1

and Zt+1 and, in particular, covt(ct+1, kt+1).

(ii) The steady-state solution - assuming it exists - satisfies ∆ct+1 = ∆kt+1 = 0 and At = 1

for each time period. Hence we can drop the time subscript in the steady state to obtain

β[αkα−1 + 1− δ] = 1.

As shown in Chapters 2 and 3, this implies that in equilibrium

k '
µ
δ + θ

α

¶ −1
1−α

c = kα − δk.

We also note that the implied real interest rate is

rt = akα−1t − δ,

and so in equilibrium r = θ, which is the required condition for a steady-state solution.

(iii) The optimal short-run solution to the model is a non-linear system of equations in two

endogenous variables ct and kt. A log-linear approximation to this system is obtained using the

result that the function f(xt) can be approximated about x∗t as a linear relation in lnxt by taking

a first-order Taylor series approximation of

f(xt) = f(elnxt)

so that

ln f(xt) ' ln f(x∗t ) +
f 0(x∗t )x

∗
t

f(x∗t )
[lnxt − lnx∗t ].

This approximation can be generalised to f(x1t,..., xnt) as

ln f(x1t, ..., xnt) ' ln f(x∗1t, ..., x∗nt) +Σni=1
f 0i(x

∗
1t, ..., x

∗
nt)x

∗
it

f(x∗1t, ..., x
∗
nt)

[lnxit − lnx∗it].
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Omitting the intercept, invoking certainty equivalence, noting that Et lnAt+1 = ρ lnAt and in

equilibrium lnA = 0, the log-linear approximation to the Euler equation can be shown to be

Et∆ ln ct+1 ' −
(δ + θ)(1− α)

σ
Et ln kt+1 +

(δ + θ)ρ

σ
lnAt.

Omitting the intercept once again, the log-linearized resource constraint is

ln kt+1 ' −
θ + (1− α)δ

α
ln ct + (1 + θ) ln kt +

(δ + θ)ρ

α
lnAt

These two equations form a system linear in ln ct and ln kt, from which the solution for each

variable may be obtained.

(b) (i) In the above solution output, consumption and capital are stationary I(0) variables but

in practice they are non-stationary I(1) variables. This alone implies that the model is misspecified.

(ii) A simple way to re-specify the model so that these variables are I(1) is to assume that

technical progress is non-stationary, instead of stationary as at present. This can be achieved

by setting ρ = 1. This assumption is sufficient to account for the non-stationarity of all real

macroeconomic variables in the economy. It is, in effect, a common non-stationary stochastic

shock. It does not, of course, explain why technical progress has this property. An extra source

of non-stationarity in nominal macro variables is often assumed to come from the growth of the

money supply. In countries where there is sustained population growth, for a time, this may

generate an additional source of non-stationarity to all real macro variables.

(c) (i) In the model above output, consumption and capital have a single source of randomness,

namely, technical progress. This implies that they are perfectly correlated. In practice, we find

that they are highly, but not perfectly, correlated and are cointegrated. This implies that each

variable must have a separate, or idiosyncratic, but stationary, source of randomness, but they

have just the one non-stationary common stochastic shock.

(ii) Identifying what these additional sources of randomness are is a major feature in DSGE

model building, especially where the aim is to estimate the model. A simple, and obvious, solution
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is to assume that all variables are measured with error, but the orders of magnitude of the required

measurement errors make this somewhat implausible. Examples of other sources of randomnesss

include preference shocks, additional independent stationary shocks to the production function,

shocks due to obsolesence, independent shocks to the labour supply, price and wage setting shocks

perhaps reflecting variable markups, shocks to government expenditures and revenues, domestic

monetary shocks, foreign demand, price and interest rate shocks and exchange rate shocks.

14.2 After (log-) linearization all DSGE models can be written in the form

B0xt = B1Etxt+1 +B2zt.

If there are lags in the model, then the equation will be in companion form and xt and zt will be

long (state) vectors. And if B0 is invertible then the DSGE model can also be written as

xt = A1Etxt+1 +A2zt,

where A1 = B−10 B1 and A2 = B−10 B2.

(a) Show that the model in Exercise 14.1 can be written in this way.

(b) Hence show that the solution can be written as a vector autoregressive-moving average

(VARMA) model.

(c) Hence comment on the effect of a technology shock.

Solution

(a) The log-linear approximation to the short-run solution of Exercise 14.1 can be written in

matrix form as the system⎡⎢⎢⎣ 1 + θ − θ+(1−α)δ
α

0 1

⎤⎥⎥⎦
⎡⎢⎢⎣ ln kt

ln ct

⎤⎥⎥⎦ =
⎡⎢⎢⎣ 1 0

(δ+θ)(1−α)
σ 1

⎤⎥⎥⎦Et

⎡⎢⎢⎣ ln kt+1

ln ct+1

⎤⎥⎥⎦−
⎡⎢⎢⎣ (δ+θ)ρ

α

(δ+θ)ρ
σ

⎤⎥⎥⎦ lnAt.

This may be denoted by the matrix equation

B0xt = B1Etxt+1 +B2zt,
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where Xt = (ln kt, lnct)0 and Zt = lnAt. As B0 is invertible, the system can also be written as

xt = AEtxt+1 + Czt,

where A = B−10 B1 and C = B−10 B2.

(b) To show that the system can be written as a VAR we must first examine its dynamic

properties. Introducing the lag operator and recalling that Etxt+1 = L−1xt, the system can be

written as

(I −AL−1)xt = Czt.

The dynamic solution of this equation depends on the roots of the determinental equation

|A|− (trA)L+ L2 = 0.

There are two roots. Setting L = 1 gives three cases:

(i) |A|− (trA) + 1 > 0 implies both roots are either stable or unstable,

(ii) |A| − (trA) + 1 < 0 implies a saddlepath solution (one root is stable and the other is

unstable),

(iii) |A|− (trA) + 1 = 0 then at least one root is 1.

Assuming that σ ≥ α+ 2 - a sufficient but not necessary condition - it can be shown that

|A|− (trA) + 1 = −
[θ + (1− α)δ] (δ+θ)(1−α)σ

α(1 + θ)
< 0.

Thus, the two roots satisfy η1 > 1 and η2 < 1, and so the short-run dynamics about the steady-

state growth path follow a saddlepath. The system can be written as

η1(1−
1

η1
L)(1− η2L

−1)xt = adj(A− L)Czt.

Hence,

xt =
1

η1
xt−1 +

1

η1
(1− η2L

−1)−1adj(A− L)Czt.
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Recalling that zt = lnAt = ρ lnAt−1 + et and Et lnAt+s = ρs lnAt, we can re-write this as

xt =
1

η1
xt−1 +G0 lnAt +G1 lnAt−1,

or

xt = (
1

η1
+ ρ)xt−1 −

ρ

η1
xt−2 +G0et +G1et−1,

which is a VARMA(2,1) in xt.

(c) It follows that a technology shock et will cause a disturbance to equilibrium and that the

system will return to equilibrium at a speed dependent on η1 and ρ. The closer is ρ to unity, the

slower the return to equilibrium. If ρ = 1 then the solution would take the form

∆xt =
1

η1
∆xt−1 +G0et +G1et−1.

The shock would then have a permanent effect on xt and solution would be a VARIMA(1,1,1).

14.3. Consider the real business cycle model defined in terms of the same variables as in

Exercise 14.1 with the addition of employment, nt:

Ut = Et

∞X
s=0

βs[
ct+s

1−σ

1− σ
− γ

nt+s
1−φ

1− φ
]

yt = ct + it

yt = Atk
α
t n

1−α
t

∆kt+1 = it − δkt

lnAt = ρ lnAt−1 + et,

where et ∼ i.i.d(0, ω2).

(a) Derive the optimal solution

(b) Hence find the steady-state solution.

(c) Log-linearize the solution about its steady state to obtain the short-run solution.

211



(d) What is the implied dynamic behavior of the real wage and the real interest rate?

Solution

(a) The economy’s resource constraint is

Atk
α
t n

1−α
t = ct + kt+1 − (1− δ)kt

The problem is to maximize the value function

Vt = U(ct) + βEt(Vt+1)

=
ct+s

1−σ

1− σ
− γ

nt+s
1−φ

1− φ
+ βEt(Vt+1)

subject to the resource constraint. Noting the results in Exercise 14.1, the first-order conditions

are

∂Vt
∂ct

= c−σt − βEt[c
−σ
t+1 · αAt+1k

α−1
t+1 n

1−α
t+1 + 1− δ] = 0

and

∂Vt
∂nt

= n−φt + βEt[
∂Vt+1
∂nt+1

· ∂nt+1
∂nt

] = 0

with

∂Vt+1
∂nt+1

= n−φt+1.

From the resource constraint

∂nt+1
∂nt

=

∂nt+1
∂kt+1
∂nt
∂kt+1

= −
αAt+1k

α−1
t+1 n

1−α
t+1 +1−δ

(1−α)At+1kαt+1n
−α
t+1

[(1− α)Atkαt n
−α
t ]−1

= −[αAt+1k
α−1
t+1 n

1−α
t+1 + 1− δ]

At

At+1

µ
kt
kt+1

¶αµ
nt+1
nt

¶α
,

giving

∂Vt
∂nt

= n−φt − βEt{n−φt+1[αAt+1k
α
t+1n

−α
t+1 + 1− δ]

At

At+1

µ
kt
kt+1

¶αµ
nt+1
nt

¶α
} = 0.
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Hence the solution is

Et

"
β

µ
ct+1
ct

¶−σ
(αAt+1k

α−1
t+1 n

1−α
t+1 + 1− δ)

#
= 1

Et

"
β

At

At+1

µ
kt
kt+1

¶αµ
nt
nt+1

¶φ−α
(αAt+1k

α−1
t+1 n

1−α
t+1 + 1− δ)

#
= 1

plus the economy’s resource constraint.

Note that this result appears to be different from that in Chapter 2 as here we are taking

account of the stochastic structure of the problem and therefore using stochastic dynamic pro-

gramming. The second equation is an Euler equation for employment. If combined with the Euler

equation for consumption it would give a similar result to that in Chapter 2.

(b) The steady-state solution - assuming it exists - satisfies ∆ct+1 = ∆kt+1 = ∆nt+1 = 0 and

At = 1 for each time period. Hence we can drop the time subscript in the steady state to obtain

from both equations above

β[αkα−1n1−α + 1− δ] = 1.

In equilibrium therefore

k

n
'

µ
δ + θ

α

¶ −1
1−α

c

n
=

µ
k

n

¶α
− δ

k

n
.

This shows that we can only determine the long-run values of c
n and

k
n .

(c) Omitting the intercept, invoking certainty equivalence, noting that Et lnAt+1 = ρ lnAt and

in equilibrium lnA = 0, the log-linear approximation to the above solution is

Et∆ ln ct+1 ' −(δ + θ)(1− α)

σ
(Et ln kt+1 −Et lnnt+1) +

(δ + θ)ρ

σ
lnAt

Et∆ lnnt+1 ' − α

φ− α
Et∆ ln kt+1 +

(δ + θ)(1− α)

φ− α
(Et ln kt+1 −Et lnnt+1)−

(δ + θ)ρ

φ− α
lnAt

together with the log-linearized resource constraint

ln kt+1 ' −
θ + (1− α)δ

α
ln ct + (1 + θ) ln kt +

(δ + θ)(1− α)

α
lnnt +

(δ + θ)ρ

α
lnAt.
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These three equations form a system linear in ln ct, ln kt and lnnt from which the short-run

solution for each variable may be obtained. The resulting system can now be represented as a

VARMA model in the three variables.

(d) From Chapter 2, the implied real interest rate and real wage are

rt =
∂yt
∂kt
− δ

= αAt

µ
kt
nt

¶−(1−α)
− δ

wt =
yt − (rt + δ)kt

nt

= (1− α)At

µ
kt
nt

¶α
.

Their dynamic behavior can therefore be derived directly from that of kt
nt
of ln kt − lnnt.

14.4 For a log-linearized version of the model of Exercise 14.1 write a Dynare program to

compute the effect of an unanticipated temporary technology shock on the logarithms of output,

consumption and capital and the implied real interest rate assuming that α = 0.33, δ = 0.1, σ = 4,

θ = 0.05, ρ = 0.5 and the variance of the technology shock et is zero.

Notes:

(i) Dynare runs in both Matlab and Gauss and is freely downloadable from http://www.dynare.org/

(ii) Dynare uses a different dating convention. It dates non-jump variables like the capital

stock at the end and not the start of the period, i.e. as t− 1 and not t.

Solution

The different dating convention of Dynare implies the solution of Exercise 14.1 must be re-dated

as

Atk
α
t−1 = ct + kt − (1− δ)kt−1

Et

"
β

µ
ct+1
ct

¶−σ
(αAt+1k

α−1
t + 1− δ)

#
= 1
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The log-linear approximation to this model is

Et∆ ln ct+1 ' − (δ + θ)(1− α)

σ
Et ln kt +

(δ + θ)

σ
lnAt+1

ln kt ' −θ + (1− α)δ

α
ln ct + (1 + θ) ln kt−1 +

(δ + θ)

α
lnAt

lnAt = ρ lnAt−1 + et

The real interest rate is

rt = αAtk
−(1−α)
t−1 − δ.

We define the variables as log deviations from their steady state, hence their initial values are set

to zero. The Dynare program is

% Ex14.4

close all;

%––––––—

% variables

%––––––—

var y c k a r;

varexo e;

%––––––—

% parameters

%––––––—

parameters delta theta alpha sigma rho;

alpha=0.33;

theta=0.05;

sigma= 4;

delta=0.1;

rho=0.5;
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%––––––—

% model

%––––––—

model;

c=c(+1)+((delta+theta)*(1-alpha)/sigma)*k-((delta+theta)/sigma)*a(+1);

k=-((theta+delta*(1-alpha))/alpha)*c+(1+theta)*k(-1)+((delta+theta)/alpha)*a;

y=alpha*k(-1)+a;

a=rho*a(-1)+e;

r=alpha*a*exp((alpha-1)*k(-1));

end;

%–––––––––-

% initial values of variables

%–––––––––-

initval;

y=0;

k=0;

c=0;

e=0;

i=0;

end;

steady;

%––––––—

% values of lagged variables

%––––––—

histval;

k(0)=0;
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a(0)=0;

end;

%––––––—

% shocks

%––––––—

shocks;

var e;

periods 1;

values 1;

end;

%––––––—

% computation

%––––––—

simul (periods=40);

rplot y c k r;

The impulse response functions, which are cut off after 40 periods and forced to converge to

their steady-state, are
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14.5 For the model of Exercise 14.1 write a Dynare program to compute the effect of a tempo-

rary technology shock assuming that α = 0.33, δ = 0.1, σ = 4, θ = 0.05, ρ = 0.5 and the variance

of the technology shock et is unity. Plot the impulse response functions for output, consumption,

capital and the real interest rate.

Solution

The different dating convention of Dynare implies the solution of Exercise 14.1 must be re-dated

as

Atk
α
t−1 = ct + kt − (1− δ)kt−1

Et

"
β

µ
ct+1
ct

¶−σ
(αAt+1k

α−1
t + 1− δ)

#
= 1

We must then add the equation

lnAt = ρ lnAt−1 + et.

Finally, we recall that the real interest rate is

rt = αAtk
−(1−α)
t−1 − δ.
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The initial and steady-state values are calculated from the parameter values. Thus, A = 1,

k =
¡
δ+θ
α

¢ 1
α−1 , y = ka and c = y − δk. The Dynare program is then

% Ex14.5

close all;

%––––––—

% variables

%––––––—

var y c k a r;

varexo e;

%––––––—

% parameters

%––––––—

parameters delta theta alpha sigma rho;

alpha=0.33;

theta=0.05;

sigma= 4;

delta=0.1;

rho=0.5;

%––––––—

% model

%––––––—

model;

c=c(+1)*(((alpha*a(+1)*(k^(alpha-1))+1-delta)/(1+theta))^(-1/sigma));

y=a*(k(-1)^alpha);

k=y-c+(1-delta)*k(-1);
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ln(a)=rho^ln(a(-1))+e;

r=alpha*a*(k(-1)^(alpha-1));

end;

%–––––––––-

% initial values of variables

%–––––––––-

initval;

k=3.244;

c=1.15;

a=1;

e=0;

end;

steady;

%––––––—

% values of lagged variables

%––––––—

histval;

k(0)=3.244;

a(0)=1;

end;

%––––––—

% shocks

%––––––—

shocks;

var e;

periods 1;

220



values 1;

end;

%––––––—

% computation

%––––––—

simul (periods=20);

rplot y c k r;

The impulse response functions are
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14.6. For the model of Exercise 14.5 write a Dynare program for a stochastic simulation which

calculates the means, variances, cross correlations and autocorrelations.

Solution

The Dynare program is

% Ex14.6
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close all;

%––––––—

% variables

%––––––—

var y c k a r;

varexo e;

%––––––—

% parameters

%––––––—

parameters delta theta alpha sigma rho;

alpha=0.33;

theta=0.05;

sigma= 4;

delta=0.1;

rho=0.5;

%––––––—

% model

%––––––—

model;

c=c(+1)*(((alpha*a(+1)*(k^(alpha-1))+1-delta)/(1+theta))^(-1/sigma));

y=a*(k(-1)^alpha);

k=y-c+(1-delta)*k(-1);

ln(a)=rho^ln(a(-1))+e;

r=alpha*a*(k(-1)^(alpha-1));

end;

%–––––––––-
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% initial values of variables

%–––––––––-

initval;

k=3.244;

c=1.15;

a=1;

e=0;

end;

steady;

%––––––—

% values of lagged variables

%––––––—

histval;

k(0)=3.244;

a(0)=1;

end;

%––––––—

% shocks

%––––––—

shocks;

var e = 1;

end;

steady;

stoch_simul(order = 1);

The output is
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THEORETICAL MOMENTS

VARIABLE MEAN STD. DEV. VARIANCE

y 3.8395 4.2289 17.8835

c 2.9948 0.8383 0.7028

k 8.4469 6.9681 48.5540

a 1.8987 2.1196 4.4926

r 0.1500 0.1995 0.0398

MATRIX OF CORRELATIONS

Variables y c k a r

y 1.0000 0.5035 0.6080 0.9700 0.7856

c 0.5035 1.0000 0.9921 0.2782 -0.1391

k 0.6080 0.9921 1.0000 0.3966 -0.0136

a 0.9700 0.2782 0.3966 1.0000 0.9125

r 0.7856 -0.1391 -0.0136 0.9125 1.0000

COEFFICIENTS OF AUTOCORRELATION

Order 1 2 3 4 5

y -0.2866 0.2746 0.0152 0.1212 0.0655

c 0.9124 0.8599 0.7980 0.7460 0.6949

k 0.8337 0.8215 0.7466 0.7050 0.6536

a -0.4444 0.1975 -0.0878 0.0390 -0.0173

r -0.3347 0.2511 -0.0162 0.0962 0.0403

The responses to the shock are
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14.7 (a) Consider the New Keynesian model

πt = π∗ + α(Etπt+1 − π∗) + β(πt−1 − π∗) + δxt + eπt

xt = Etxt+1 − γ(Rt −Etπt+1 − θ) + ext

Rt = θ + π∗ + μ(πt − π∗) + υxt,

where πt is inflation, π∗ is target inflation, xt is the output gap, Rt is the nominal interest rate,

eπt and ext are independent, shocks.ean iid processes and φ = (1−β)π∗. Write a Dynare program

to compute the effect of a supply shock in period t such that eπt = −ext = 5. Assume that π∗ = 2,

α = 0.6, α+ β = 1, δ = 1, γ = 5, θ = 3, μ = 1.5 and ν = 1.

(b) Compare the monetary policy response to the increase in inflation compared with that of

a strict inflation targeter when ν = 0.

Solution

(a) The Dynare program is

% Ex14.7
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% New Keynesian model with a Taylor rule

% The effect of a supply shock

close all;

%–––––––-

% variables

%–––––––

var inf x R;

varexo e;

%–––––––-

% parameters

%–––––––

parameters alpha beta delta theta mu nu;

alpha=0.6;

beta=1-alpha;

delta=1;

theta=5;

mu=1.5;

nu=1;

%–––––––-

% model

%–––––––

model(linear);

inf = 2 + alpha*(inf(+1)-2) + beta*(inf(-1)-2) + delta*x + e;

x = x(+1) - theta*(R-inf(+1)-3)-e;

R = 5 + mu*(inf-2) + nu*x;

end;
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%–––––––-

% initial values

%–––––––

initval;

inf=2;

x=0;

R=5;

e=0;

end;

steady;

%–––––––-

% values of lagged variables

%–––––––

histval;

inf(0)=2;

end;

%–––––––-

% shocks

%–––––––

shocks;

var e; periods 1; values 5;

end;

%–––––––-

% computation

%–––––––

simul(periods=20);
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rplot inf x R;

(b) The impulse response functions for flexible and strict inflation targeting are

0 5 10 15 20 25
-4

-3

-2

-1

0

1

2

3

4

5

6
Plot of inf x   R   

Periods

 

 

inf
x
R

0 5 10 15 20 25
-5

-4

-3

-2

-1

0

1

2

3

4

5
Plot of inf x   R   

Periods

 

 

inf
x
R

Flexible inflation targeting Strict inflation targeting

With flexible inflation targeting monetary policy hardly reacts to the increase in inflation. But

with strict inflation targeting monetary policy reacts strongly to offset the inflation shock leaving

inflation at its target value. As a result output falls more with strict inflation targeting than with

flexible inflation targeting.
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