Partial Differential Equations, An Introduction to Theory and Applications
 by
 Michael Shearer and Rachel Levy

Corrections to Text

page 27, problem 3: This problem is too hard (but can be done with maple or mathematica). Calculate $u_{2}(x)$ only.
page 41: problem 7 should be the initial value problem posed on the plane $(x, y) \in \mathbb{R}^{2}$.
A better version of the problem is:
7b. Use the method of characteristics to solve the initial value problem for $u=u(x, y, t)$ on the domain $-\infty<x, y<\infty$, small $t>0$:

$$
\begin{aligned}
u_{t}+y u_{x}+u u_{y} & =0, \\
u(x, y, 0) & =x+y .
\end{aligned}
$$

Show that the solution has a singularity as $t \rightarrow t^{*}$ for some $t^{*}>0$, and find the value of t^{*}.
Problem 10 should refer to a different example - example 5 , chapter 2.
page 79 , problem 2: Include "in $\mathbb{R}^{n "}$
page 117, problem 7.5: a ' + ' should be ' $=$ '. Prove

$$
(f * g)^{\prime}=f^{\prime} * g=f * g^{\prime} .
$$

page 118, problem $6(\mathrm{~b})$: There should be a π in the argument of $\sin : \sin \pi(x-n)$.
page 138: Delete sentence after Lemma 9.1.
page 150, problem 9: Hint should be $u=v / r$.
page 173, problem 3: Missing minus sign on $u^{\prime \prime} . \quad L=-u^{\prime \prime}+c(x) u$
page 219: line 5 from bottom: w should be ψ.

