Partial Differential Equations,

An Introduction to Theory and Applications by Michael Shearer and Rachel Levy

Corrections to Text

page 27, problem 3: This problem is too hard (but can be done with maple or mathematica). Calculate $u_2(x)$ only.

page 41: problem 7 should be the initial value problem posed on the plane $(x, y) \in \mathbb{R}^2$. A better version of the problem is:

7b. Use the method of characteristics to solve the initial value problem for u = u(x, y, t) on the domain $-\infty < x, y < \infty$, small t > 0:

$$u_t + y \, u_x + u u_y = 0,$$

$$u(x, y, 0) = x + y$$

Show that the solution has a singularity as $t \to t^*$ for some $t^* > 0$, and find the value of t^* .

Problem 10 should refer to a different example - example 5, chapter 2.

page 79, problem 2: Include "in \mathbb{R}^{n} "

page 117, problem 7.5: a '+' should be '='. Prove

$$(f*g)' = f'*g = f*g'.$$

page 118, problem 6(b): There should be a π in the argument of sin : $\sin \pi (x - n)$.

page 138: Delete sentence after Lemma 9.1.

page 150, problem 9: Hint should be u = v/r.

page 173, problem 3: Missing minus sign on u''. L = -u'' + c(x)u

page 219: line 5 from bottom: w should be ψ .